首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

2.
Diversifying planted forests by increasing genetic and species diversity is often promoted as a method to improve forest resilience to climate change and reduce pest and pathogen damage. In this study, we used a young tree diversity experiment replicated at two sites in the UK to study the impacts of tree diversity and tree provenance (geographic origin) on the oak (Quercus robur) insect herbivore community and a specialist biotrophic pathogen, oak powdery mildew. Local UK, French, and Italian provenances were planted in monocultures, provenance mixtures, and species mixes, allowing us to test whether: (a) local and nonlocal provenances differ in their insect herbivore and pathogen communities, and (b) admixing trees leads to associational effects on insect herbivore and pathogen damage. Tree diversity had variable impacts on foliar organisms across sites and years, suggesting that diversity effects can be highly dependent on environmental context. Provenance identity impacted upon both herbivores and powdery mildew, but we did not find consistent support for the local adaptation hypothesis for any group of organisms studied. Independent of provenance, we found tree vigor traits (shoot length, tree height) and tree apparency (the height of focal trees relative to their surroundings) were consistent positive predictors of powdery mildew and insect herbivory. Synthesis. Our results have implications for understanding the complex interplay between tree identity and diversity in determining pest damage, and show that tree traits, partially influenced by tree genotype, can be important drivers of tree pest and pathogen loads.  相似文献   

3.
4.
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context.  相似文献   

5.
Neighbouring heterospecific plants are often observed to reduce the probability of herbivore attack on a given focal plant. While this pattern of associational resistance is frequently reported, experimental evidence for underlying mechanisms is rare particularly for potential plant species diversity effects on focal host plants and their physical environment. Here, we used an established forest diversity experiment to determine whether tree diversity effects on an important insect pest are driven by concomitant changes in host tree growth or the light environment. We examined the effects of tree species richness, canopy cover and tree growth on the probability of occurrence, the abundance, and volume of galls caused by the pineapple gall adelgid Adelges abietis on Norway spruce. Although tree diversity had no effect on gall abundance, we observed that both the probability of gall presence and gall volume (an indicator of maternal fecundity) decreased with tree species richness and canopy cover around host spruce trees. Structural equation models revealed that effects of tree species richness on gall presence and volume were mediated by concurrent increases in canopy cover rather than changes in tree growth or host tree density. As canopy cover did not influence tree or shoot growth, patterns of associational resistance appear to be driven by improved host tree quality or more favourable microclimatic conditions in monocultures compared to mixed‐stands. Our study therefore demonstrates that changes in forest structure may be critical to understanding the responses of herbivores to plant diversity and may underpin associational effects in forest ecosystems.  相似文献   

6.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

7.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

8.
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.  相似文献   

9.
A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.  相似文献   

10.
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant–herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.  相似文献   

11.
Studies on the effects of plant diversity on insect herbivory have produced conflicting results. Plant diversity has been reported to cause positive and negative responses of herbivores. Explanations for these conflicting responses include not only various population-level processes but also changes in plant quality that lead to changes in herbivore performance. In a tree diversity experiment, we investigated the effects of tree diversity on insect herbivory on oak in general and whether the effects of tree diversity on herbivore damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. Our study showed that the feeding damage caused by naturally occurring herbivores on oak trees decreased with increasing diversity of tree stands. The performance of L. dispar on oak leaves was not affected by tree diversity, neither in field nor laboratory experiments. Our results can be explained by the various processes behind the hypothesis of associational resistance.  相似文献   

12.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

13.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

14.
The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals (“phytometer” species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.  相似文献   

15.
This study analyzed the effects of tree size, and correlated architectural tree characteristics, on the assemblages of ants and insect herbivores associated with Anadenanthera macrocarpa (Mimosaceae). The latter is a myrmecophilous tree species from the Atlantic rainforest in south-eastern Brazil. Ants and insect herbivores were collected in 30 individuals of A. macrocarpa , ranging from young individuals (>3 m in height) to emergent trees (up to 40 m). Tree height was a strong indicator of other tree characteristics, including trunk diameter, crown height, crown volume, and number of bifurcations. Ants were collected using arboreal pitfall traps and beating, while insect herbivores with beating only. There was a significant increase in both abundance and species richness of ants and insect herbivores with an increase in tree height. In addition, tree height had a significant effect on the species composition of ants and insect herbivores. Assemblages of both taxa showed a nested organization pattern. The species found in small- and medium-sized trees, in general, consisted of a subset of the species found in the crowns and branches of larger, canopy or emergent trees. Thus, in A. macrocarpa , there was not a replacement of insect species with plant ontogeny. This finding is at variance with those conducted in tropical evergreen forests and which show a clear stratification between the understory and canopy insect faunas. Additional studies are needed to explain these contrasting patterns, but it is possible that differences in microclimate are involved. As the forest we studied is semi-deciduous, microclimatic gradients between the understory and the canopy habitat are probably less severe than in an evergreen forest, thus resulting in a lower turnover of species.  相似文献   

16.
The reduction of insect herbivory is one of the services provided by tree diversity in forest ecosystems. While it is increasingly acknowledged that the compositional characteristics of tree species assemblages play a major role in triggering associational resistance to herbivores, underlying mechanisms are less well known. We addressed this question in the ORPHEE experiment by assessing pine processionary moth infestations (Thaumetopoea pityocampa) across a tree diversity gradient from pine monocultures to five species mixtures. We showed that tree species richness per se had no effect on the probability of attack by this pest. By contrast, the infestation rate was strongly dependent on plot composition. Mixtures of pines (Pinus pinaster) and birches (Betula pendula) were less prone to T. pityocampa infestations, whereas mixtures of pines and oaks (Quercus spp.) were more often attacked than pine monocultures. By taking into account the relative height of pines and associated broadleaved species, this effect could be explained by pine apparency. Pines were on average 343 ± 5 cm height. Birches, as fast growing trees, were slightly taller than pines (363 ± 6 cm), while oak trees were significantly smaller (74 ± 1 cm). Host trees of T. pityocampa were then partly hidden in mixtures of pines and birches but more apparent in mixtures with oaks. We suggest that reduced pine apparency disrupted visual cues used by female moths to select host trees prior to oviposition. This study highlights the need to take into account tree traits such as growth rate when selecting the tree species that have to be associated in order to improve forest resistance to pest insects.  相似文献   

17.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

18.
19.
Although the effects of plant diversity on herbivores are contingent upon herbivore traits and the source of plant diversity (e.g. intra‐ and interspecific), most studies have analyzed these effects separately. We compared the effects of genotypic diversity of big‐leaf mahogany Swietenia macrophylla with that of tree species diversity on two specialist caterpillars (Hypsipyla grandella stem borers and Phyllocnistis meliacella leaf miners) and three generalist leafhoppers (Cicadellidae) feeding on mahogany in a large‐scale (7.2 ha) forest diversity experiment in southern Mexico. The experiment consisted of fifty‐nine 21 × 21‐m plots, with 64 tree saplings each (3‐m spacing between plants). Plots were either mahogany monocultures or species polycultures of four species (including mahogany) and – within each of these two plot types – mahogany was represented by either one or four genotypes. Throughout a five‐month period, beginning six months after planting, we measured mahogany growth and monitored herbivore and predator (spider) abundance. We found no effect of mahogany genotypic diversity on either specialist caterpillars or generalist leafhoppers, and this result was consistent across levels of tree species diversity. In contrast, species diversity had significant effects on both specialists but neither of the generalist herbivores. Specifically, species diversity lowered H. grandella attack at the middle of the sampling season, but increased attack at the end of the season, whereas P. meliacella abundance was consistently reduced. Such effects were not mediated by effects of species diversity on plant growth (of which there were none), but rather through resource heterogeneity. Diversity did not influence spider abundance. This study is one of few to directly compare sources of plant diversity, and uniquely compares such effects among herbivores with contrasting life histories (e.g. diet breadths). Overall, we demonstrate that plant species diversity effects outweigh those of genotypes, and our results suggest that such effects are stronger on specialist than generalist herbivores.  相似文献   

20.
Bottom‐up and top‐down impacts on herbivores can be influenced by plant productivity, structural complexity, vigor and size. Although these traits are likely to vary with plant development, the influence of plant ontogeny on the relative importance of plant quality (i.e. bottom‐up forces) and predation risk (i.e. top‐down forces) has been the focus of little previous investigation. We evaluated the role of plant ontogeny for the relative importance of bottom‐up and top‐down forces on insect herbivore abundance, species richness, and species diversity attacking the tropical tree Casearia nitida. We also quantified the cascading effects on herbivory, growth and reproduction of this plant species. Plant quality traits (nitrogen and phenolic compounds) were assessed in saplings and reproductive trees. Bottom‐up forces were manipulated by fertilizing plants from both ontogenetic stages. Top‐down forces were manipulated by excluding insectivorous birds from saplings and reproductive trees. Plant ontogeny influenced foliage quality in terms of total phenolics, which were in greater concentration in reproductive trees than in saplings; however, it did not influence bottom‐up forces as modified by fertilization. Bird exclusion increased herbivore density with the same magnitude on both stages. Ontogeny influenced species diversity, which was greater in reproductive trees than in saplings, and also influenced treatment impacts on species richness and diversity. Although top‐down forces increased herbivory equally on plants of each ontogenetic stage, the two stages showed different overcompensation responses to increased damage: caged saplings produced greater leaf biomass than non‐caged saplings, whereas caged trees increased in height proportionally more than non‐caged trees. In sum, plant ontogeny influenced the impact of bird predation on herbivore density, species richness, and species diversity, and the growth variables affected by increased damage in caged plants. We suggest that plant ontogeny can contribute to some extent to the influence of plant quality and the third trophic level on herbivores in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号