首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Damage to plant communities imposed by insect herbivores generally decreases from low to high latitudes. This decrease is routinely attributed to declines in herbivore abundance and/or diversity, whereas latitudinal changes in per capita food consumption remain virtually unknown. Here, we tested the hypothesis that the lifetime food consumption by a herbivore individual decreases from low to high latitudes due to a temperature-driven decrease in metabolic expenses. From 2016 to 2019, we explored latitudinal changes in multiple characteristics of linear (gallery) mines made by larvae of the pygmy moth, Stigmella lapponica, in leaves of downy birch, Betula pubescens. The mined leaves were larger than intact leaves at the southern end of our latitudinal gradient (at 60°N) but smaller than intact leaves at its northern end (at 69°N), suggesting that female oviposition preference changes with latitude. No latitudinal changes were observed in larval size, mine length or area, and in per capita food consumption, but the larval feeding efficiency (quantified as the ratio between larval size and mine size) increased with latitude. Consequently, S. lapponica larvae consumed less foliar biomass at higher latitudes than at lower latitudes to reach the same size. Based on space-for-time substitution, we suggest that climate warming will increase metabolic expenses of insect herbivores with uncertain consequences for plant–herbivore interactions.  相似文献   

2.
Latitudinal patterns in biotic interactions, including herbivory, have been widely debated during the past years. In particular, recent meta‐analysis questioned the hypothesis that herbivory increases from the poles towards the equator. Our study was designed to verify this hypothesis by exploring latitudinal patterns in abundance and diversity of birch‐feeding insect herbivores belonging to the leafminer guild in northern Europe, from 59° to 69°N. We collected branches from five mature trees of two birch species (Betula pendula and B. pubescens) at each study site (ten sites for each of five latitudinal gradients) twice per season (in early and late summer of 2008–2011) and attributed all mines found on leaves of these branches to a certain taxon of insects. Latitudinal patterns were quantified by calculating Spearman rank correlation coefficients between both abundance and diversity of leafmining taxa and latitudes of sampling sites. In general, both abundance and diversity of leafminers significantly decreased with latitude. However, we discovered pronounced variation in patterns of latitudinal changes among study years and leafminer taxa. Variation among study years was best explained by mean temperatures in July at the northern ends of our gradients. During cold years, abundance of leafminers significantly decreased with latitude, while during warm years the abundance was either independent of latitude or even increased towards the pole. In the northern boreal forests (66° to 69°N), herbivores demonstrated larger changes in densities in response to temperature variations than in the boreo‐nemoral forests (59° to 62°N). Our data suggest that climate warming will result in a stronger increase in herbivory at higher latitudes than at lower latitudes.  相似文献   

3.
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.  相似文献   

4.
Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences.  相似文献   

5.
1. All else being equal, the greater the local species richness of plants, the greater the number of associated herbivore species. Because most herbivore insects feed on a subset of closely related plant species, plant phylogenetic diversity is expected to play a key role in determining the number of herbivore species. What is not well known, however, is how an increase in the species richness of exotic plants affects the species richness of herbivores. 2. In this study, we used plant–fruit fly interactions to investigate the influence of the proportion and species richness of exotic host plants on the species richness of herbivorous insects. We also tested whether the phylogenetic diversity of host plants increases when the number of exotic plant species increases. 3. We found that the species richness of fruit flies is more accurately predicted by the richness of native host plants than by total plant species richness (including both native and exotic species). The proportion of exotic host species and the phylogenetic diversity of host plants had negative and positive effects, respectively, on the species richness of fruit flies. 4. Our findings suggest that a positive effect of plant richness on herbivore richness occurs only when an increase in plant diversity involves plant species with which native herbivores share some evolutionary history.  相似文献   

6.
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.  相似文献   

7.
Abstract We investigated the relationship between abundance and body size (body mass) of 162 insect herbivore species on the host plant Acacia falcata along its entire coastal latitudinal distribution (eastern Australia), spanning a gradient in mean annual temperature of 4.3°C. We extend previous research by assessing these relationships at different spatial scales (latitudes pooled, among latitudes and within latitudes) and at different taxonomic levels (insect phytophages pooled, phytophagous Coleoptera and Hemiptera, and five component suborders/superfamilies). Insect species were collected from two orders (Hemiptera and Coleoptera) and five component suborders/superfamilies. There were no consistent trends in the relationships (linear or polygonal/hump‐shaped) between abundance and body mass when latitudes were pooled, among latitudes, or when phytophagous insect species were separated into their component suborder/superfamily groups. The reason for the lack of consistent trends might be due to the insect herbivores not fully exploiting their host plant and the relative absence of competition among herbivore species for food resources. This is further assessed in relation to the lack of a consistent pattern in species richness of Coleoptera and Hemiptera herbivores from the same dataset and rates of chewing and sap‐sucking herbivory along the same latitudinal gradient. Future studies of abundance–body size relationships are discussed in relation to sampling across environmental gradients and accounting for the influence of host plant identity and insect phylogeny.  相似文献   

8.
Abstract. 1. Data are presented on the species richness and faunal composition of herbivorous insects on birch seedlings, saplings and trees at one site in Northern England.
2. Species richness of insect herbivores in equal-sized samples from birch seedlings and trees was similar through most of the season.
3. Effects of plant architecture were confined to the first sampling date, when seedling faunas were species poor compared with trees – possibly due to safe overwintering sites on the extensive bark, twigs and buds of trees.
4. The faunal composition of birch seedlings, saplings and trees was also similar. Out of a total of 112 recorded species of herbivores, only one aphid species was confined to seedlings.
5. Similarly, no evidence for clear-cut vertical stratification of insects within trees was found.
6. Species turnover as host plants mature ('horizontal' stratification) and vertical stratification within trees add little to the high overall species richness of birch-feeding insects in Britain, contrary to the predictions of Lawton (1983).  相似文献   

9.
Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within continents due to climate warming. In this study we examine the herbivore load (herbivore biomass per plant biomass), predator load (predator biomass per plant biomass) and predator pressure (predator biomass per herbivore biomass) on an inter-continental non-native and an intra-continental range-expanding plant species and two congeneric native species. All four plant species co-occur in riparian habitat in north-western Europe. Insects were collected in early, mid and late summer from three populations of all four species. Before counting and weighing the insects were classified to trophic guild as carnivores (predators), herbivores, and transients. Herbivores were further subdivided into leaf-miners, sap-feeders, chewers and gallers. Total herbivore loads were smaller on inter-continental non-native and intra-continental range-expanding plants than on the congeneric natives. However, the differences depended on time within growing season, as well as on the feeding guild of the herbivore. Although the predator load on non-native plants was not larger than on natives, both non-native plant species had greater predator pressure on the herbivores than the natives. We conclude that both these non-native plant species have better bottom-up as well as top-down control of herbivores, but that effects depend on time within growing season and (for the herbivore load) on herbivore feeding guild. Therefore, when evaluating insects on non-native plants, variation within season and differences among feeding guilds need to be taken into account.  相似文献   

10.
We compared community composition, density, and species richness of herbivorous insects on the introduced plant Solidago altissima L. (Asteraceae) and the related native species Solidago virgaurea L. in Japan. We found large differences in community composition on the two Solidago species. Five hemipteran sap feeders were found only on S. altissima. Two of them, the aphid Uroleucon nigrotuberculatum Olive (Hemiptera: Aphididae) and the scale insect Parasaissetia nigra Nietner (Hemiptera: Coccidae), were exotic species, accounting for 62% of the total individuals on S. altissima. These exotic sap feeders mostly determined the difference of community composition on the two plant species. In contrast, the herbivore community on S. virgaurea consisted predominately of five native insects: two lepidopteran leaf chewers and three dipteran leaf miners. Overall species richness did not differ between the plants because the increased species richness of sap feeders was offset by the decreased richness of leaf chewers and leaf miners on S. altissima. The overall density of herbivorous insects was higher on S. altissima than on S. virgaurea, because of the high density of the two exotic sap feeding species on S. altissima. We discuss the importance of analyzing community composition in terms of feeding guilds of insect herbivores for understanding how communities of insect herbivores are organized on introduced plants in novel habitats.  相似文献   

11.
High-latitude plants are often more palatable to herbivores than low-latitude conspecifics. Does increased plant palatability lead to better herbivore performance? Our field and laboratory work investigated (A) whether high-latitude plants have traits indicating that they should be higher-quality foods for herbivores; (B) whether geographic differences in plant quality are more important than local adaptation of herbivores. We studied 3 plant species and 6 invertebrate herbivores in U.S. Atlantic Coast. Past studies had shown high-latitude individuals of these plants are more palatable than low-latitude conspecifics. We documented plant traits and herbivore performance (body size) in the field across latitude. We collected individuals from different latitudes for factorial (plant region x herbivore region) laboratory experiments, examining how herbivore performance was affected by plant region, herbivore region, and their interaction (i.e., local adaptation). Field surveys suggested high-latitude plants were likely of higher quality to herbivores. Leaf nitrogen content in all plant species increased toward high latitudes, consistent with lower leaf C/N and higher leaf chlorophyll content at high latitudes. Furthermore, leaf toughness decreased toward higher latitudes in 1 species. The body size of 4 herbivore species increased with latitude, consistent with high-latitude leaves being of higher quality, while 2 grasshopper species showed the opposite pattern, likely due to life-history constraints. In the laboratory, high-latitude plants supported better performance in 4 herbivore species (marginal in the 5th). The geographic region where herbivores were collected affected herbivore performance in all 6 species; however, the pattern was mixed, indicating a lack of local adaptation by herbivores to plants from their own geographic region. Our results suggest that more-palatable plants at high latitudes support better herbivore growth. Given that geographic origin of either plants or herbivores can affect herbivore performance, the nature of plant-herbivore interactions is likely to change if climate change “reshuffles” plant and herbivore populations across latitude.  相似文献   

12.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

13.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

14.
The plant richness hypothesis (PRH) is used to explain herbivorous insect richness based on the number of plant species, predicting a positive relationship. However, the influence of plant richness on insect distribution can become stronger with greater levels of specialization of herbivores. In this meta-analysis, I tested whether there is any difference in the correlation force recorded between studies that investigated endophagous versus exophagous herbivores, and galling versus non-galling guilds, in order to determine whether more specialized groups have a stronger relationship. Furthermore, I calculated whether effect sizes were homogeneous between galling studies carried out at local and regional scales, and between tropical and temperate regions. A total of 52 correlations were analyzed between plant species richness and herbivore species richness, with 18 correlations derived from galling herbivores and 34 from non-galling herbivores. The effect sizes were significant and positive in all studies, being higher for endophages than for exophages, and for galling than for non-galling studies. These results provide evidence that groups of insects with a higher level of host specialization and specificity (e.g., endophagous and galling) exhibit a greater dependence on plant richness. There was no difference in effect sizes for galling studies between the local and regional level or between tropical and temperate groups. Despite the large variability found for galling studies, effect sizes were consistent independently of climatic region and latitudinal variation. These results suggest that the PRH for galling insects can be generalized to most ecosystem and vegetation types.  相似文献   

15.
Glandular trichomes play a defensive role against herbivores in the leaves of many plant species. However, their functional role in inflorescences has not been studied, even though theory suggests that tissues with a higher fitness value, such as inflorescences, should be better defended. Using manipulative experiments, we analysed the defensive role of glandular trichomes against herbivorous insects in the inflorescence of Iberian columbines (genus Aquilegia), and its inter-population and inter-taxa variation in relation to herbivore abundance and potential selective pressure. The experiments were conducted in eight populations belonging to four subspecies of two columbines (Aquilegia vulgaris and Aquilegia pyrenaica). For each population, we estimated the density of glandular trichomes in the inflorescences, the abundance of insects stuck in the inflorescences, the abundance of small herbivorous insects, the incidence of damage on flowers and fruits, and the fruit set. The density of glandular trichomes on the inflorescence of A. vulgaris and A. pyrenaica was higher in regions of higher herbivore abundance. We also found that when the plants lose the protection of glandular trichomes, small insects have better access to flowers and fruits, causing more damage and reducing plant fitness. This study concludes that glandular trichomes are part of an adaptive response against phytophagous insect herbivory. The observed variation in herbivore pressure between taxa, likely caused by habitat differentiation, might have played a role in trait differentiation through divergent selection. This result adds evidence to the differentiation of the Iberian columbines through habitat specialization.  相似文献   

16.
Abstract. 1. The ways in which a soil fertility gradient affects three trophic level food webs defined by plants of the family Asteraceae, flower‐head herbivores, and their parasitoids was investigated. It was tested how the fertility gradient alters: (i) the abundance and richness of plants, herbivores, and their parasitoids, (ii) the herbivore–plant ratio, and (iii) the connectance of the plant–herbivore community matrix. 2. From April to May 2000, plants and insects were sampled in 16 Brazilian Cerrado (sensu stricto) sites along a physiognomic gradient varying from open shrublands (cerrado) to closed woodlands (cerradão). Sites were objectively positioned along the physiognomic gradient by a single index, tree density. Sixty‐seven per cent of the variation in tree density among sites was correlated to two principal components of a PCA, representing gradients of soil fertility. 3. Asteraceae abundance, richness, and flower‐head availability were negatively related to tree density due to their preference for sunny environments, despite the surplus of soil nutrients. The abundance and richness of Diptera and Lepidoptera, the most important flower‐head herbivores, were also negatively related to tree density. Parasitoid abundance decreased with tree density; however, the number of parasitoids per hosts was lower in cerrado, suggesting that top‐down forces are not getting stronger in more productive sites, as could be expected. 4. Community allometry analyses showed that the herbivore to plant ratio was independent of community richness and did not respond to tree density. 5. Connectance of the plant–herbivore matrix was dependent on the community matrix size. Proportionally, species‐rich cerrado sites had fewer interactions than their species‐poor counterparts. Nevertheless, after removing the effect of the matrix size, connectance was not related to tree density. 6. Soil fertility, as the primary cause of the cerrado–cerradão physiognomic gradient, strongly affected the abundance and richness of plants, herbivores and their parasitoids; however, it had little effect on important community attributes, such as the herbivore–plant ratio and the connectance of the plant–herbivore matrix.  相似文献   

17.
We conducted a transplant experiment to investigate the potential colonization of a plant species by insect herbivores under a warmer climate. Acacia falcata seeds collected from four latitudes, encompassing the current coastal range of the species (1150 km), were grown in the same soil type and climatic conditions in a glasshouse. Plants were then transplanted to two sites, 280 km north of A. falcata's current coastal range; the transplant sites were 1.2 and 5.5°C warmer than the northernmost and southernmost boundaries of the species' current range, respectively. We compared the structure and composition of the herbivorous Hemiptera and Coleoptera communities on the transplants (i) to that of A. falcata within its current distribution, (ii) to a closely related Acacia species (Acacia leptostachya) that naturally occurred at the transplant sites, and (iii) among the A. falcata transplants originating from seeds collected at different latitudes. Herbivory on A. falcata was also compared between the transplants and the current distribution, and among transplant originating from different latitudes. Thirty species of externally feeding herbivorous Coleoptera and Hemiptera were collected from the transplanted A. falcata over a period of 12 months following transplantation. Guild structure of this herbivore community (based on the proportion of species within each of seven groups based on taxonomy and feeding style) did not significantly differ between the transplants and that found on A. falcata within its natural range, but did differ between the transplants and A. leptostachya. Rates of herbivory did not significantly differ between the transplants and plants at sites within the natural range. There were no significant differences in herbivore species richness or overall rates of herbivory on the transplants originating from different latitudes. In conclusion, host plant identity was apparently more important than climate in influencing the structure of the colonizing herbivore community. If this result holds for other plant–herbivore systems, we might expect that under a warmer climate, broad patterns in insect community structure and rates of herbivory may remain similar to that at present, even though species composition may change substantially.  相似文献   

18.
The availability and quality of resources for herbivores in tropical dry forests (TDFs) vary in time and space, affecting herbivore guilds differently across spatial scales (both horizontally and vertically), with consequences to the distribution of leaf damage in these forests. We attempted to elucidate the distribution patterns of herbivorous insect guilds and leaf damage throughout the secondary succession and vertical stratification along the rainy season in a Brazilian TDF. With the advance of the succession, a greater richness and abundance of herbivorous insects were found, resulting in higher leaf damage in intermediate and late stages. This pattern, however, was not observed for the frequency of leaf miners. At a smaller spatial scale, the host tree height positively affected the richness and abundance of insects. The higher leaf damage was found in canopy, which also harbored a greater richness and abundance of chewing herbivores compared to the understory at both the beginning and the end of the rainy season. Although for sap‐sucking insects, this was only true at the beginning of the season. We detected a decrease in insect richness and abundance at the end of the rainy season, probably due to a synchronization of insect activity with the availability of young, highly nutritious plant tissues. These results are consistent with other studies that found a general trend of increasing richness and abundance of herbivorous insects and leaf damage throughout the secondary succession (early to late stages) and between vertical strata (understory to canopy), suggesting that forest complexity positively affects herbivores.  相似文献   

19.
Broad-scale geographical patterns in local stream insect genera richness   总被引:1,自引:0,他引:1  
Comprehensive global studies of stream invertebrate assemblages are rare and have produced contradictory results. To address this shortcoming, we compiled data from 495 published estimates of local genera richness for three orders of stream‐dwelling insects (Ephemeroptera, Plecoptera, Trichoptera) from throughout the world and used these data to describe global geographic patterns in stream insect genera richness and to address two questions: 1) does local stream insect richness vary more with regional historical factors or with local ecological factors?, and 2) to what extent have streams converged in the number of taxa they support?
Maximum genera richness varied sharply across the range of latitude examined from the south to north poles for all three orders of aquatic insects. Ephemeroptera richness showed 3 peaks (~30°S, 10°N, and 40°N) with highest richness near 5–10°N and 40°N latitude. Plecoptera richness was distinctly highest at ~40°N latitude with a similar peak at 40°S latitude. Trichoptera richness showed less latitudinal variation than the other taxa but was slightly higher near the equator and at 40°N and S latitude than at other latitudes. Genera richness generally declined with increasing elevation, except for Plecoptera. Maximum genera richness increased steadily with a measure of regional terrestrial net primary production and declined sharply with a measure of hydrologic disturbance for all orders. Richness varied widely among both biogeographical realms and biomes, although ca 2 times as much variation in richness was associated with biome as biogeographic realm. Richness for each order was highest in different biogeographic realms, but all orders had highest richness in broadleaf forest biomes. These latter results imply that spatial variation in local richness of stream insects is more strongly affected by contemporary ecological factors than by historical biogeography and that maintenance of intact forested landscapes may be critical to the conservation of stream invertebrate faunas.  相似文献   

20.
Selective feeding by herbivores on establishing seedlings has been suggested to affect genotype frequencies in several plant populations. The existence of genotypes susceptible to herbivores calls for an explanation in such populations. In the present study we assessed the choice of multiple herbivores, field voles (Microtus agrestis) and insects, among genotypes of silver birch (Betula pendula) representing variation occurring in a naturally regenerated stand. We examined how food choice of voles and insects is related to each other, competitive ability among the seedling genotypes and variation in soil fertility. We set up a field experiment and randomly assigned seedling populations, composed of mixed genotypes, to fully crossed insect exposure and fertilization treatments. After the first growing season we exposed a half of the seedling populations to vole herbivory. Voles selected clearly among the genotypes: they preferred the fastest growing seedlings as well as those with a low density of resin droplets on their stems. The preference of voles and insects among the genotypes was tightly correlated. We conclude that the effects of herbivory compensate those of intraspecific competition in this system and thus favor coexistence of genotypes differing in their susceptibility to herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号