共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fergal P. Rattray Dorte Myling-Petersen Dianna Larsen Dan Nilsson 《Applied microbiology》2003,69(1):304-311
A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides. 相似文献
3.
Purification, characterization and some properties of diacetyl(acetoin) reductase from Enterobacter aerogenes 总被引:1,自引:0,他引:1
A new method, faster, milder and more efficient than the one previously described [Bryn, K., Hetland, O. & Stormer, F. C. (1971) Eur. J. Biochem, 18, 116-119], for purification of diacetyl(acetoin) reductase from Enterobacter aerogenes is proposed. The experiments carried out with the electrophoretically pure preparations obtained by this procedure show that the enzyme (a) produces L-glycols from the corresponding L-alpha-hydroxycarbonyls by reversible reduction of their oxo groups and also reduces the oxo group of uncharged alpha-dicarbonyls converting them into L-alpha-hydroxycarbonyls, and (b) is specific for NAD. This is a new enzyme for which we suggest the systematic name of L-glycol: NAD+ oxidoreductase and the recommended name of L-glycol dehydrogenase(NAD). The molecular mass, pI, affinity for substrates and pH profiles of this enzyme are also described. 相似文献
4.
Genome sequence of Leuconostoc pseudomesenteroides KCTC 3652 总被引:2,自引:0,他引:2
We announce the genome sequence of one of the most prevalent lactic acid bacteria present during the manufacturing process of cane juice, the type strain Leuconostoc pseudomesenteroides KCTC 3652 (3,244,985 bp, with a G+C content of 38.3%), which consists of 1,160 large contigs (>100 bp in size). All of the contigs were assembled by the Newbler Assembler 2.3 software program (454 Life Sciences). 相似文献
5.
Witold Kot Karin Hammer Horst Neve Finn K. Vogensen 《Applied and environmental microbiology》2013,79(10):3311-3314
Two phages, P793 and ΦLN04, sharing 80.1% nucleotide sequence identity but having different strains of Leuconostoc pseudomesenteroides as hosts, were selected for identification of the host determinant gene. Construction of chimeric phages leading to the expected switch in host range identified the host determinant genes as ORF21P793/ORF23ΦLN04. The genes are located in the tail structural module and have low sequence similarity at the distal end. 相似文献
6.
7.
8.
A Chesapeake Bay water isolate of Mycobacterium scrofulaceum containing a 115-megadalton plasmid (pVT1) grew in the presence of 100 microM HgCl2 and converted soluble 203Hg2+ to volatile mercury at a rate of 50 pmol/10(8) cells per min. Cell extracts contained a soluble mercuric reductase whose activity was not dependent on exogenously supplied thiol compounds. The enzyme displayed nearly identical activity when either NADH or NADPH served as the electron donor. A spontaneously cured derivative lacking pVT1 failed to grow in the presence of 100 microM HgCl2 and possessed no detectable mercuric reductase activity. 相似文献
9.
The kinetic mechanism of diacetyl and 2,3-pentanedione reduction by diacetyl reductase from Staphylococcus aureus was investigated. The shape of the primary double reciprocal plots, the product inhibition pattern, and the features of the inhibition by a substrate analogue (acetone) show that diacetyl is reduced via an Ordered Bi-Bi mechanism, and 2,3-pentanedione by an Ordered Bi-Bi or Theorell-Chance mechanism. NADH is the leading substrate in both reactions. Affinity constants for the coenzyme and the substrates and inhibition constants for NAD, acetoin, and acetone were also calculated. This enzyme has a high affinity for NADH; Km (31-50 microM) and Ks (20-27 microM) for this compound are around one-tenth of the NADH intracellular concentration. Therefore, it must operate in vivo saturated with the coenzyme. This condition is not adequate to play the role, formerly proposed for diacetyl reductases, of regulating the equilibrium between oxidized and reduced forms of pyridine-nucleotides. 相似文献
10.
11.
Conditions for the laboratory-scale production of acetoin plus diacetyl by Enterobacter Cloacae ATCC 27613 were studied. Thirty-five g acetoin plus diacetyl/50 g sucrose were obtained when fermentation was carried out in 2. 5 liter medium containing 12.5 g peptone and 12. 5 g yeast extract, at pH 7.0, in a 5 liter conical flask on a shaker (240rpm) at 28–30°C for 48 hr. Recovery of pure diacetyl was 85% of the total plus diacetyl. 相似文献
12.
Kieran N. Jordan Margie O'donoghue Seamus Condon timothy M. Cogan 《FEMS microbiology letters》1996,143(2-3):291-297
Abstract Diacetyl formation was linear with time and with protein concentration when a cell-free extract of Leuconostoc lactis NCW1 was added to a buffer system containing pyruvate, thiamine pyrophosphate and MgS4 (final concentrations 60 mM, 0.11 mM and 0.22 mM, respectively). No diacetyl was detected in the absence of pyruvate or cell-free extract and no increase in diacetyl formation was detected on the addition of acetyl-CoA. When 2-acetolactate (1.6 mM) was the substrate, autodecarboxylation to diacetyl and acetoin occurred under aerobic and anaerobic conditions. When cell-free extract was added, decarboxylation of 2-acetolactate to acetoin and diacetyl increased 4–6-fold, under aerobic and anaerobic conditions. When the cell-free extract was boiled, diacetyl formation from 2-acetolactate was reduced to the level of autodecarboxylation. The results suggest that diacetyl is formed enzymatically in the presence and absence of oxygen, as well as spontaneously, from 2-acetolactate. 相似文献
13.
Zhao Wang Qingqing Song Meilan Yu Yifang Wang Bin Xiong Yinjun Zhang Jianyong Zheng Xiangxian Ying 《Applied microbiology and biotechnology》2014,98(2):641-650
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values. 相似文献
14.
Aims: To verify whether diacetyl can be produced by Lactococcus lactis via amino acid catabolism, and to investigate the impact of the pH on the conversion.
Methods and Results: Resting cells of L. lactis were incubated in reaction media at different pH values, containing l -aspartic acid or l -alanine as a substrate. After incubation, the amino acid and metabolites were analysed by HPLC and GC/MS. At pH 5 about 75% of aspartic acid and only 40% of alanine was degraded to pyruvate via a transamination step that requires the presence of α-ketoglutarate in the medium, but diacetyl was only produced from aspartic acid. Three per cent of pyruvate was transformed to acetolactate of which 50% was converted into diacetyl. At pH 5·5 and above the pyruvate conversion into acetolactate was less efficient than at pH 5, and acetolactate was mainly decarboxylated to acetoin.
Conclusions: Acetoin and diacetyl can be formed as a result of aspartate or alanine catabolism by L. lactis in the presence of α-ketoglutarate in the medium.
Significance and Impact of the Study: Lactic acid bacteria exhibiting both glutamate dehydrogenase activity and high aspartate aminotransferase activity are expected to be good diacetyl producers during cheese ripening at pH close to 5. 相似文献
Methods and Results: Resting cells of L. lactis were incubated in reaction media at different pH values, containing l -aspartic acid or l -alanine as a substrate. After incubation, the amino acid and metabolites were analysed by HPLC and GC/MS. At pH 5 about 75% of aspartic acid and only 40% of alanine was degraded to pyruvate via a transamination step that requires the presence of α-ketoglutarate in the medium, but diacetyl was only produced from aspartic acid. Three per cent of pyruvate was transformed to acetolactate of which 50% was converted into diacetyl. At pH 5·5 and above the pyruvate conversion into acetolactate was less efficient than at pH 5, and acetolactate was mainly decarboxylated to acetoin.
Conclusions: Acetoin and diacetyl can be formed as a result of aspartate or alanine catabolism by L. lactis in the presence of α-ketoglutarate in the medium.
Significance and Impact of the Study: Lactic acid bacteria exhibiting both glutamate dehydrogenase activity and high aspartate aminotransferase activity are expected to be good diacetyl producers during cheese ripening at pH close to 5. 相似文献
15.
Mutants of Bacillus subtilis blocked in acetoin reductase 总被引:3,自引:0,他引:3
16.
17.
N. Sawa K. Okamura T. Zendo K. Himeno J. Nakayama K. Sonomoto 《Journal of applied microbiology》2010,109(1):282-291
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity. 相似文献
18.
Kinetic studies of beef liver diacetyl reductase 总被引:1,自引:0,他引:1
19.
Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides Grown in the Presence of Fructose
下载免费PDF全文

Gert J. Grobben Sjors W. P. G. Peters H. Wouter Wisselink Ruud A. Weusthuis Marcel H. N. Hoefnagel Jeroen Hugenholtz Gerrit Eggink 《Applied microbiology》2001,67(6):2867-2870
We report the spontaneous formation of a stable mannitol-producing variant of Leuconostoc pseudomesenteroides. The mannitol-producing variant showed mannitol dehydrogenase activity which was absent in the parental strain. It was also able to use fructose and glucose simultaneously, whereas the parental strain showed diauxic growth with these sugars. A possible explanation of these observations is discussed. 相似文献
20.
The nonstarter lactic acid bacterium Leuconostoc pseudomesenteroides is a species widely found in the dairy industry and plays a key role in the formation of aromatic compounds. Here, we report the first genome sequence of a dairy strain of Leuconostoc pseudomesenteroides, which is 2 Mb. 相似文献