首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diverse cellular contributions to the skeletal elements of the vertebrate shoulder and pelvic girdles during embryonic development complicate the study of their patterning. Research in avian embryos has recently clarified part of the embryological basis of shoulder formation. Although dermomyotomal cells provide the progenitors of the scapular blade, local signals appear to have an essential guiding role in this process. These signals differ from those that are known to pattern the more distal appendicular skeleton. We have studied the impact of Tbx15, Gli3, Alx4 and related genes on formation of the skeletal elements of the mouse shoulder and pelvic girdles. We observed severe reduction of the scapula in double and triple mutants of these genes. Analyses of a range of complex genotypes revealed aspects of their genetic relationship, as well as functions that had been previously masked due to functional redundancy. Tbx15 and Gli3 appear to have synergistic functions in formation of the scapular blade. Scapular truncation in triple mutants of Tbx15, Alx4 and Cart1 indicates essential functions for Alx4 and Cart1 in the anterior part of the scapula, as opposed to Gli3 function being linked to the posterior part. Especially in Alx4/Cart1 mutants, the expression of markers such as Pax1, Pax3 and Scleraxis is altered prior to stages when anatomical aberrations are visible in the shoulder region. This suggests a disorganization of the proximal limb bud and adjacent flank mesoderm, and is likely to reflect the disruption of a mechanism providing positional cues to guide progenitor cells to their destination in the pectoral girdle.  相似文献   

2.
In the sea urchin embryo, the large micromeres and their progeny function as a critical signaling center and execute a complex morphogenetic program. We have identified a new and essential component of the gene network that controls large micromere specification, the homeodomain protein Alx1. Alx1 is expressed exclusively by cells of the large micromere lineage beginning in the first interphase after the large micromeres are born. Morpholino studies demonstrate that Alx1 is essential at an early stage of specification and controls downstream genes required for epithelial-mesenchymal transition and biomineralization. Expression of Alx1 is cell autonomous and regulated maternally through beta-catenin and its downstream effector, Pmar1. Alx1 expression can be activated in other cell lineages at much later stages of development, however, through a regulative pathway of skeletogenesis that is responsive to cell signaling. The Alx1 protein is highly conserved among euechinoid sea urchins and is closely related to the Cart1/Alx3/Alx4 family of vertebrate homeodomain proteins. In vertebrates, these proteins regulate the formation of skeletal elements of the limbs, face and neck. Our findings suggest that the ancestral deuterostome had a population of biomineral-forming mesenchyme cells that expressed an Alx1-like protein.  相似文献   

3.
4.
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling. To better understand how Alx4 functions in the pathways that regulate AP-patterning, we also studied genomic regulatory sequences that are capable of directing expression of a reporter gene in a pattern corresponding to endogenous Alx4 expression in anterior limb bud mesenchyme. We observed, as expected for authentic Alx4 expression, expansion of reporter construct expression in a Shh-/- background. Total lack of reporter expression in a Gli3-/- background confirms the existence of Gli3-dependent and -independent Alx4 expression in the limb bud. Apparently, these two modules of Alx4 expression are linked to dissimilar functions.  相似文献   

5.
6.
7.
The Alx gene family is implicated in craniofacial development and comprises two to four homeobox genes in each vertebrate genome analyzed. Using phylogenetics and comparative genomics, we show that the common ancestor of jawed vertebrates had three Alx genes descendent from the two-round genome duplications (Alx1, Alx3, Alx4), compared with a single amphioxus gene. Later in evolution one of the paralogues, Alx3, was lost independently from at least three different vertebrate lineages, whereas Alx1 and Alx4 were consistently retained. Comparison of spatial gene expression patterns reveals that the three mouse genes have equivalent craniofacial expression to the two chick and frog genes, suggesting that redundancy compensated for gene loss. We suggest that multiple independent loss of one Alx gene was predisposed by extensive and persistent overlap in gene expression between Alx paralogues. Even so, it is unclear whether it was coincidence or evolutionary bias that resulted in the same Alx gene being lost on each occasion, rather than different members of the gene family.  相似文献   

8.
We report the cDNA sequence and expression of a mouse homeobox gene, Dmbx1, from the PRD class and comparison to its human orthologue. The gene defines a new homeobox gene family, Dmbx, phylogenetically distinct from the Ptx, Alx, Prx Otx, Gsc, Otp and Pax gene families. The Dmbx1 gene is expressed in the developing mouse diencephalon, midbrain and hindbrain, and has dynamic expression during forelimb and hindlimb development. Unusually for homeobox genes, there is no orthologue in the Drosophila or Caenorhabditis genomes; we argue this reflects secondary loss.  相似文献   

9.
Human peroxiredoxins 1 and 2, also known as Prx1 and Prx2, are more than 90% homologous in their amino acid sequences. Prx1 and Prx2 are elevated in various cancers and are shown to influence diverse cellular processes. Although their growth regulatory role has traditionally been attributed to the peroxidase activity, the physiological significance of this function is unclear because the proteins are highly susceptible to inactivation by H(2)O(2). A chaperone activity appears to emerge when their peroxidase activity is lost. Structural studies suggest that they may form a homodimer or doughnut-shaped homodecamer. However, little information is available whether human Prx1 and Prx2 are duplicative in structure and function. We noted that Prx1 contains a cysteine (Cys(83)) at the putative dimer-dimer interface, which is absent in Prx2. We studied the role of Cys(83) in regulating the peroxidase and chaperone activities of Prx1, because the redox status of Cys(83) might influence the oligomeric structure and consequently the functions of Prx1. We show that Prx1 is more efficient as a molecular chaperone, whereas Prx2 is better suited as a peroxidase enzyme. Substituting Cys(83) with Ser(83) (Prx1C83S) results in dramatic changes in the structural and functional characteristics of Prx1 in a direction similar to those of Prx2. Here we also report the first crystal structure of human Prx1 and the presence of the Cys(83)-Cys(83) bond at the dimer-dimer interface of decameric Prx1. These findings are consistent with the hypothesis that human Prx1 and Prx2 possess unique functions and regulatory mechanisms and that Cys(83) bestows a distinctive identity to Prx1.  相似文献   

10.
During Drosophila leg development, the distal-most compartment (pretarsus) and its immediate neighbour (tarsal segment 5) are specified by a pretarsus-specific homeobox gene, aristaless, and tarsal-segment-specific Bar homeobox genes, respectively; the pretarsus/tarsal-segment boundary is formed by antagonistic interactions between Bar and pretarsus-specific genes that include aristaless (Kojima, T., Sato, M. and Saigo, K. (2000) Development 127, 769-778). Here, we show that Drosophila Lim1, a homologue of vertebrate Lim1 encoding a LIM-homeodomain protein, is involved in pretarsus specification and boundary formation through its activation of aristaless. Ectopic expression of Lim1 caused aristaless misexpression, while aristaless expression was significantly reduced in Lim1-null mutant clones. Pretarsus Lim1 expression was negatively regulated by Bar and abolished in leg discs lacking aristaless activity, which was associated with strong Bar misexpression in the presumptive pretarsus. No Lim1 misexpression occurred upon aristaless misexpression. The concerted function of Lim1 and aristaless was required to maintain Fasciclin 2 expression in border cells and form a smooth pretarsus/tarsal-segment boundary. Lim1 was also required for femur, coxa and antennal development.  相似文献   

11.
During murine embryogenesis, expression of the paired-like homeodomain protein Alx4 is restricted to tissues whose development depends on the expression of lymphoid enhancer factor-1 (LEF-1). Given the defects seen in hair follicle development in both LEF-1 and Alx4 knockout and mutant animals and the overlapping expression patterns, we predicted that LEF-1 and Alx4 might form physical complexes. We demonstrate here the interaction between LEF-1 and Alx4. This interaction is mediated through a specific proline-rich domain in the N-terminal region of Alx4 and requires the DNA-binding domain (HMG-box) of LEF-1. We also demonstrate that LEF-1 and Alx4 can bind simultaneously to adjacent sites on the neural cell adhesion molecule (N-CAM) promoter and that this binding alters N-CAM promoter activity. Furthermore, when expressed in primary mammary stromal cells, Alx4 decreases the expression of endogenous N-CAM protein. These results reveal a potential mechanism that gives rise to mesenchymal-specific activities of LEF-1.  相似文献   

12.
The aristaless-related homeobox genes Prx1 and Prx2 are required for correct skeletogenesis in many structures. Mice that lack both Prx1 and Prx2 functions display reduction or absence of skeletal elements in the skull, face, limbs and vertebral column. A striking phenotype is found in the lower jaw, which shows loss of midline structures, and the presence of a single, medially located incisor. We investigated development of the mandibular arch of Prx1(-/-)Prx2(-/-) mutants to obtain insight into the molecular basis of the lower jaw abnormalities. We observed in mutant embryos a local decrease in proliferation of mandibular arch mesenchyme in a medial area. Interestingly, in the oral epithelium adjacent to this mesenchyme, sonic hedgehog (Shh) expression was strongly reduced, indicative of a function for Prx genes in indirect regulation of SHH: Wild-type embryos that were exposed to the hedgehog-pathway inhibitor, jervine, partially phenocopied the lower jaw defects of Prx1(-/-)Prx2(-/-) mutants. In addition, this treatment led to loss of the mandibular incisors. We present a model that describes how loss of Shh expression in Prx1(-/-)Prx2(-/-) mutants leads to abnormal morphogenesis of the mandibular arch.  相似文献   

13.
Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3) which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophila aristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp), Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.  相似文献   

14.
15.
16.
A group of mouse aristaless-related genes has been implicated in functions in the development of the craniofacial skeleton. We have generated an Alx3 mutant allele in which the lacZ coding sequence is inserted in-frame in the Alx3 gene and the sequences encoding the conserved protein domains are deleted. Mice homozygous for this null allele are indistinguishable from wild-type mice. Compound mutants of Alx3 and Alx4, however, show severe craniofacial abnormalities that are absent in Alx4 single mutants. Alx3/Alx4 double mutant newborn mice have cleft nasal regions. Most facial bones and many other neural crest derived skull elements are malformed, truncated or even absent. The craniofacial defects in Alx3/Alx4 double mutant embryos become anatomically manifest around embryonic day 10.5, when the nasal processes appear to be abnormally positioned. This most probably leads to a failure of the medial nasal processes to fuse in the facial midline and subsequently to the split face phenotype. We detected a significant increase in apoptosis localised in the outgrowing frontonasal process in embryonic day 10.0 double mutant embryos, which we propose to be the underlying cause of the subsequent malformations.  相似文献   

17.
18.
Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号