首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Whyte  H E Ruley    E Harlow 《Journal of virology》1988,62(1):257-265
Regions of the adenovirus type 5 early region 1A (E1A) proteins that are required for transformation were defined by using a series of deletion mutants. Deletion mutations collectively spanning the entire protein-coding region of E1A were constructed and assayed for their ability to cooperate with an activated ras oncogene to induce transformation in primary baby rat kidney cells. Two regions of E1A (amino acids 1 to 85 and 121 to 127) were found to be essential for transformation. Deletion of all or part of the region from amino acids 121 to 127 resulted in a total loss of transforming ability. An adjacent stretch of amino acids (residues 128 to 139), largely consisting of acidic residues, was found to be dispensable for transformation but appeared to influence the efficiency of transformation. Amino acids 1 to 85 made up a second region of the E1A protein that was essential for transformation. Deletion of all or part of this region resulted in a loss of the transforming activity. Even a mutation resulting in a single amino acid change at position 2 of the polypeptide chain was sufficient to eliminate transformation. Deletion of amino acids 86 to 120 or 128 to 289 did not eliminate transformation, although some mutations in these regions had lowered efficiencies of transformation. Foci induced by transformation-competent mutants could be expanded into cell lines that retained their transformed morphology and constitutively expressed the mutant E1A proteins.  相似文献   

2.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

3.
Cellular targets for transformation by the adenovirus E1A proteins   总被引:164,自引:0,他引:164  
P Whyte  N M Williamson  E Harlow 《Cell》1989,56(1):67-75
Three cellular proteins, including species of 300,000 daltons and 107,000 daltons as well as p105-RB, the product of the retinoblastoma susceptibility gene, stably interact with the adenovirus E1A proteins. To help determine the functional basis of these interactions, the regions of E1A that participate in these interactions were mapped using a series of deletion mutants. The 300,000 dalton and the 107,000 dalton proteins interacted with sequences within amino acids 1 to 76 and 121 to 127, respectively. Interaction with the third cellular protein, p105-RB, required the presence of sequences from two noncontiguous regions of the E1A polypeptide chain, amino acids 30 to 60 and 121 to 127. The regions of E1A that are required for these interactions coincided precisely with the regions of E1A that are required for its transforming function. These results suggest that the interactions with these cellular proteins are fundamental to the transforming activity of E1A.  相似文献   

4.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the shortest known protein with transforming activity. To identify the specific amino acids required for in vitro focus formation in mouse C127 cells, we used oligonucleotide-directed saturation mutagenesis to construct an extensive collection of mutants with missense mutations in the E5 gene. Characterization of mutants with amino acid substitutions in the hydrophobic middle third of the E5 protein indicated that efficient transformation requires a stretch of hydrophobic amino acids but not a specific amino acid sequence in this portion of the protein. Many amino acids in the carboxyl-terminal third of the protein can also undergo substitution without impairment of focus-forming activity, but the amino acids at seven positions, including two cysteine residues that mediate dimer formation, appear essential for efficient transforming activity. These essential amino acids are the most well conserved among related fibropapillomaviruses. The small size of the E5 protein, its lack of similarity to other transforming proteins, and its ability to tolerate many amino acid substitutions implies that it transforms cells via a novel mechanism.  相似文献   

5.
Mutational analysis of human papillomavirus type 16 E7 functions.   总被引:20,自引:12,他引:8       下载免费PDF全文
The human papillomavirus type 16 E7 gene encodes a nuclear oncoprotein (98 amino acids [AAs] long) consisting of three regions: regions 1 (AAs 1 to 20) and 2 (AAs 21 to 40), which show high homology to the sequences of conserved domains 1 and 2, respectively, of adenovirus E1A; and region 3 (AAs 41 to 98) containing two metal-binding motifs Cys-X-X-Cys (AAs 58 and 91 to 94). We constructed AA deletion (substitution) mutants and single-AA substitution mutants of E7 placed under the control of the simian virus 40 promoter and examined their biological functions. Stable expression of E7 protein in monkey COS-1 cells required almost the entire length of E7 and was markedly lowered by the mutations in region 3. Transactivation of the adenovirus E2 promoter in monkey CV-1 cells was lowered by the mutations. It was abolished by changing Cys-24 to Gly and markedly decreased by a mutation at His-2 or at the metal-binding motifs in region 3. Focal transformation of rat 3Y1 cells by E7 was eliminated by changing His-2 to Asp or Cys-24 to Gly and was greatly impaired by changing Cys-61 or Cys-94 to Gly. The transforming function survived mutations at Leu-13 and Cys-68 and deletion of Asp-Ser-Ser (AAs 30 to 32). The data suggest that regions 1 to 3 are required for its functions and that the meta-binding motifs in region 3 are required to maintain a stable or functional structure of the E7 protein.  相似文献   

6.
7.
A point mutational analysis of human papillomavirus type 16 E7 protein.   总被引:44,自引:23,他引:21       下载免费PDF全文
The E7 open reading frame of human papillomavirus type 16 (HPV16) has been shown to be selectively retained in cervical tumors and to encode both transforming and trans-activating functions in murine cells, supporting the notion that expression of E7 contributes towards the progression of premalignant cervical lesions. A comparison among E7 sequences of different HPV types reveals some homology at the amino acid level. Of particular interest are two regions, one which contains significant homology to a region of adenovirus E1a and simian virus 40 large T (LT), and a second region which contains two conserved Cys-X-X-Cys motifs. To determine the importance of these domains to the function of the E7 protein, a series of mutants carrying substitutions at amino acids in the region of E1a-LT homology and at the Cys-X-X-Cys motifs were constructed. The mutated E7 sequences were placed under the control of a strong heterologous promoter (Moloney long terminal repeat), and the activity of the mutants was assayed in NIH 3T3 cells, a cell line in which both the transforming function and the trans-activating function of E7 could be determined. A single amino acid substitution analogous to a mutation in E1a which destroys the transforming ability of this protein abolished both transformation and trans-activation by E7. Mutations at the Cys-X-X-Cys motifs demonstrated that this region contributes to the transforming potential of E7, although proteins in which both motifs were interrupted retained a low level of transforming activity. Mutations in the region of E1a-LT homology which occur within a recognition sequence for casein kinase II did not markedly affect transforming activity of E7 but severely reduced trans-activating ability. This indicates that efficient trans-activation is not required for transformation by HPV16 E7 in these cells.  相似文献   

8.
Infection with adenovirus mutants carrying either point mutations or deletions in the coding region for the 19-kDa E1B gene product (19K protein) causes degradation of host cell and viral DNAs (deg phenotype) and enhanced cytopathic effect (cyt phenotype). Therefore, one function of the E1B 19K protein is to protect nuclear DNA integrity and preserve cytoplasmic architecture during productive adenovirus infection. When placed in the background of a virus incapable of expressing a functional E1A gene product, however, E1B 19K gene mutations do not result in the appearance of the cyt and deg phenotypes. This demonstrated that expression of the E1A proteins was responsible for inducing the appearance of the cyt and deg phenotypes. By constructing a panel of viruses possessing E1A mutations spanning each of the three E1A conserved regions in conjunction with E1B 19K gene mutations, we mapped the induction of the cyt and deg phenotypes to the amino-terminal region of E1A. Viruses that fail to express conserved region 3 (amino acids 140 to 185) and/or 2, (amino acids 121 to 185) or nonconserved sequences between conserved regions 2 and 1 of E1A (amino acids 86 to 120) were still capable of inducing cyt and deg. This indicated that activities associated with these regions, such as transactivation and binding to the product of the retinoblastoma susceptibility gene, were dispensable for induction of E1A-dependent cytotoxic effects. In contrast, deletion of sequences in the amino terminus of E1A (amino acids 22 to 107) resulted in extragenic suppression of the cyt and deg phenotypes. Therefore, a function affected by deletion of amino acids 22 to 86 of E1A is responsible for exerting cytotoxic effects in virally infected cells. Furthermore, transient high-level expression of the E1A region using a cytomegalovirus promoter plasmid expression vector was sufficient to induce the cyt and deg phenotypes, demonstrating that E1A expression alone is sufficient to exert these cytotoxic effects and that other viral gene products are not involved. Finally, placing E1A expression under the control of a strong promoter did not alter the requirement for E1B in the transformation of primary cells. One possibility is that the E1B 19K protein is required to overcome the cytotoxic effects of E1A protein expression and thereby enable primary cells to become transformed.  相似文献   

9.
10.
The rat neu gene, which encodes a receptor-like protein homologous to the epidermal growth factor receptor, is frequently activated by a point mutation altering a valine residue to a glutamic acid residue in its predicted transmembrane domain. Additional point mutations have been constructed in a normal neu cDNA at and around amino acid position 664, the site of the naturally arising mutation. A mutation which causes a substitution of a glutamine residue for the normal valine at residue 664 leads to full oncogenic activation of the neu gene, but five other substitutions do not. Substituted glutamic acid residues at amino acid positions 663 or 665 do not activate the neu gene. Thus only a few specific residues at amino acid residue 664 can activate the oncogenic potential of the neu gene. Deletion of sequences of the transforming neu gene demonstrates that no more than 420 amino acids of the 1260 encoded by the gene are required for full transforming function. Mutagenesis of the transforming clone demonstrates a correlation between transforming activity and tyrosine kinase activity. These data indicate that the activating point mutation induces transformation through (or together with) the activities of the tyrosine kinase.  相似文献   

11.
The 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids. A low level of hydrophilic amino acids was encoded at each of the randomized positions, including position 17, which is an essential glutamine in the wild-type E5 protein. Library proteins that induced transformation in mouse C127 cells stably bound and activated the PDGF beta receptor. Strikingly, 35% of the transforming clones had a hydrophilic amino acid at position 17, highlighting the importance of this position in activation of the PDGF beta receptor. Hydrophilic amino acids in other transforming proteins were found adjacent to position 17 or at position 14 or 21, which are in the E5 homodimer interface. Approximately 22% of the transforming proteins lacked hydrophilic amino acids. The hydrophilic amino acids in the transforming clones appear to be important for driving homodimerization, binding to the PDGF beta receptor, or both. Interestingly, several of the library proteins bound and activated PDGF beta receptor transmembrane mutants that were not activated by the wild-type E5 protein. These experiments identified transmembrane proteins that activate the PDGF beta receptor and revealed the importance of hydrophilic amino acids at specific positions in the transmembrane sequence. Our identification of transformation-competent transmembrane proteins with altered specificity suggests that this approach may allow the creation and identification of transmembrane proteins that modulate the activity of a variety of receptor tyrosine kinases.  相似文献   

12.
M Pethel  B Falgout    C J Lai 《Journal of virology》1992,66(12):7225-7231
We have previously shown that proper processing of dengue type 4 virus NS1 from the NS1-NS2A region of the viral polyprotein requires a hydrophobic N-terminal signal and the downstream NS2A. Results from deletion analysis indicate that a minimum length of eight amino acids at the C terminus of NS1 is required for cleavage at the NS1-NS2A junction. Comparison of this eight-amino-acid sequence with the corresponding sequences of other flaviviruses suggests a consensus cleavage sequence of Met/Leu-Val-Xaa-Ser-Xaa-Val-Xaa-Ala. Site-directed mutagenesis was performed to construct mutants of NS1-NS2A that contained a single amino acid substitution at different positions of the consensus cleavage sequence or at the immediate downstream position. Three to eight different substitutions were made at each position. A total of 50 NS1-NS2A mutants were analyzed for their cleavage efficiency relative to that of the wild-type dengue type 4 virus sequence. As predicted, nearly all substitutions at positions P1, P3, P5, P7, and P8, occupied by conserved amino acids, yielded low levels of cleavage, with the exception that Pro or Ala substituting for Ser (P5) was tolerated. Substitutions of an amino acid at the remaining positions occupied by nonconserved amino acids generally yielded high levels of cleavage. However, some substitutions at nonconserved positions were not tolerated. For example, substitution of Gly or Glu for Gln (P4) and substitution of Val or Glu for Lys (P6) each yielded a low level of cleavage. Overall, these data support the proposed cleavage sequence motif deduced by comparison of sequences among the flaviviruses. This study also showed that in addition to the eight-amino-acid sequence, the amino acid immediately following the NS1-NS2A cleavage site plays a role in cleavage.  相似文献   

13.
The zinc finger region of simian virus 40 large T antigen   总被引:23,自引:21,他引:2       下载免费PDF全文
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence Cys-302LeuLysCys-305IleLysLysGluGlnProSerHisTyrLysTyrHis- 317GluLysHis-320. In a conventional representation, the binding of zinc to the cysteines and histidines at positions 302, 305, 317, and 320 would form two minor loops and one major loop from the intervening amino acids. We made single amino acid substitutions at every position in the finger to identify possible functional elements within the putative metal-binding domain. Amino acids in the zinc finger could be divided into three classes characterized by distinct roles in DNA replication and transformation. Class 1 consisted of amino acids in the two minor loops of the finger and in the amino-terminal part of the major loop. Mutations here did not affect either replication or transformation. Class 2 consisted of the SerHisTyrLysTyr amino acids located in the carboxy terminus of the major loop of the finger. Mutations in this contiguous region reduced replication of the mutant viruses to different degrees. This clustering suggested that the region is an active site important for a specific function in DNA replication. With the exception of a mutation in the histidine at position 313, these mutations had no effect on transformation. Class 3 consisted of the proposed zinc-binding amino acids at positions 302, 305, 317, and 320 and the histidine at position 313 in the major loop of the finger. Mutations in these amino acids abolished the viability of the virus completely and had a distinctive effect on the transforming functions of the protein. Thus, the five cysteines and histidines of class 3 may play an important role in determining the overall structure of the protein. The histidine at position 313 may function both in the active site where it is located and in cooperation with the proposed zinc-binding ligands.  相似文献   

14.
Partial deletion in the src gene and the gene product were characterized in a deletion mutant, dl5, isolated from the Prague strain of Rous sarcoma virus. The mutant induced fusiform-like transformed cells, unlike the parental Prague strain, which induced round transformed cells. Determination of the total nucleotide sequences of src in dl5 and the Prague strain of Rous sarcoma virus demonstrated that in the former two deletions of 196 and 11 nucleotides had occurred at positions 403 and 696, respectively, from the 5' end of src. A protein with a molecular weight of 52,000 (p52src) was detected in cells infected with dl5, as predicted from the deletion size in src. From the nucleotide sequence, it was predicted that p52src had two deletions of 65 and 4 amino acids at positions 135 and 232, respectively, from the N-terminal methionine of p60src and also had 33 amino acid changes between these two deletion sites due to alteration of the reading frame. p52src, which contained deletions and alterations of amino acids near the N-terminus, showed protein kinase activity similar to that of p60src and functioned in the infected cells. These results strongly suggest that changes in the N-terminal region of p60src modified its transforming ability, causing induction of the fusiform-like transformation phenotype.  相似文献   

15.
16.
Among the various biological activities expressed by the products of the adenovirus E1A gene are the abilities to induce cellular DNA synthesis and proliferation in quiescent primary baby rat kidney cells. The functional sites for these activities lie principally within two regions of the E1A proteins: an N-terminal region and a small second region of approximately 20 amino acids further downstream. To study the biological functions of the first domain, we constructed an in-frame deletion of amino acid positions 23 through 107 of the E1A products. This deletion did not impede the ability of the E1A products to transactivate the adenovirus early region 3 promoter in a transient-expression assay in HeLa cells. The ability to induce DNA synthesis in quiescent baby rat kidney cells was, however, lost in the absence of these sequences. Deletion of the small second region induced a form of S phase in which DNA synthesis occurred in the apparent absence of controls required for the cessation of DNA synthesis and progression through the remainder of the cell cycle. These cells did not appear to accumulate in or before G2, and many appeared to have a DNA content greater than that in G2. The functions of both domains are required for production of transformed foci in a ras cooperation assay. Focus formation occurred, however, even when the two domains were introduced on two separate plasmids. This complementation effect appeared to require expression of both of the mutant proteins and did not appear to result merely from recombination at the DNA level.  相似文献   

17.
We have examined a series of small deletion mutants within exon 2 of the adenovirus 2/5 E1A oncogene product, the 243R protein, for immortalization, ras cooperative transformation, tumorigenesis and metastasis. Compared with wild-type 243R, various deletion mutants located between residues 193 and 243 cooperated more efficiently with ras to induce large transformed foci of less adherent cells that were tumorigenic and metastatic. However, the greatest enhancement of transformation (comparable to that obtained with a deletion of the C-terminal 67 amino acids) was observed with a mutant carrying a deletion of residues 225-238. This mutant was also more defective in immortalization. These results suggest that this 14 amino acid region may contain a function that is important for immortalization and negative modulation of tumorigenesis and metastasis. To identify cellular proteins that may associate with the exon 2-coded region of E1A (C-terminal half) and modulate its transformation potential, we constructed a chimeric gene coding for the C-terminal 68 amino acids of E1a fused to bacterial glutathione-S-transferase (GST). This fusion protein was used to purify cellular proteins that bind to the C-terminal region of E1a. A 48 kDa cellular protein doublet (designated CtBP) was found to bind specifically to the GST-E1a C-terminal fusion protein as well as to bacterially expressed full-length E1a (243R) protein. It also co-immunoprecipitated specifically with E1a. Analysis of a panel of GST-E1a C-terminal mutant proteins indicates that residues 225-238 are required for the association of E1a and CtBP, suggesting a correlation between the association of CtBP and the immortalization and transformation modulating activities of exon 2. CtBP is a phosphoprotein and the level of phosphorylation of CtBP appears to be regulated during the cell cycle, suggesting that it may play an important role during cellular proliferation.  相似文献   

18.
The amino acid sequence of the Tetrahymena calmodulin was determined. The protein is composed of 147 amino acids and the amino-terminal is acetylated. Compared to bovine brain calmodulin, there were eleven substitutions and one deletion of amino acid residues. The substitutions and deletion were concentrated in the carboxyl-terminal half of the molecule. Among the substitutions, those at positions 86 (Arg → Ile), 135 (Gln → His) and 143 (Gln → Arg) may introduce the functional difference. The deletion occurred near the carboxyl-terminal, this region being assumed to be exposed to the surface area (R.H. Kretsinger and C.D. Barry (1975)). The change in the sequence at this terminal region may be attributable to the specific activation of guanylate cyclase.  相似文献   

19.
Enveloped virus entry into host cells is typically initiated by an interaction between a viral envelope glycoprotein and a host cell receptor. For budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, the envelope glycoprotein GP64 is involved in host cell receptor binding, and GP64 is sufficient to mediate low-pH-triggered membrane fusion. To better define the role of GP64 in receptor binding, we generated and characterized a panel of antisera against subdomains of GP64. Eight subdomain-specific antisera were generated, and their reactivities with GP64 proteins and neutralization of virus infectivity and binding were examined. Antibodies directed against the N-terminal region of GP64 (amino acids 21 to 159) showed strong neutralization of infectivity and effectively inhibited binding of (35)S-labeled budded virions to Sf9 cells. In addition, we generated virions displaying truncated GP64 constructs. A construct displaying the N-terminal 274 amino acids (residues 21 to 294) of the ectodomain was sufficient to mediate virion binding. Additional studies of antisera directed against small subdomains revealed that an antiserum against a 40-amino-acid region (residues 121 to 160) neutralized virus infectivity. Site-directed mutagenesis was subsequently used for functional analysis of that region. Recombinant viruses expressing GP64 proteins with single amino acid substitutions within amino acids 120 to 124 and 142 to 148 replicated to high titers, suggesting that those amino acids were not critical for receptor binding or other important GP64 functions. In contrast, GP64 proteins with single amino acid substitutions of residues 153 and 156 were unable to substitute for wild-type GP64 and did not rescue a gp64 knockout virus. Further analysis showed that these substitutions substantially reduced binding of recombinant virus to Sf9 cells. Thus, the amino acid region from positions 21 to 159 was identified as a putative receptor binding domain, and amino acids 153 and 156 appear to be important for receptor binding.  相似文献   

20.
L Chen  W S Joo  P A Bullock    D T Simmons 《Journal of virology》1997,71(11):8743-8749
We investigated the role of the N-terminal side of simian virus 40 (SV40) large T antigen's origin-binding domain in the initiation of virus DNA replication by analyzing the biochemical activities of mutants containing single point substitutions or deletions in this region. Four mutants with substitutions at residues between 121 and 135 were partially defective in untwisting the A/T-rich track on the late side of the origin but were normal in melting the imperfect palindrome (IP) region on the early side. Deletion of the N-terminal 109 amino acids had no effect on either activity, whereas a longer deletion, up to residue 123, greatly reduced A/T untwisting but not IP melting. These results indicate that the region from residue 121 to 135 is important for A/T untwisting but not for IP melting and demonstrate that these activities are separable. Two point substitution mutants (126PS and 135PL) were characterized further by testing them for origin DNA binding, origin unwinding, oligomerization, and helicase activity. These two mutants were completely defective in origin (form U(R)) unwinding but normal in the other activities. Our results demonstrate that a failure to normally untwist the A/T track is correlated with a defect in origin unwinding. Further, they indicate that some mutants with substitutions in the region from residue 121 to 135 interact with origin DNA incorrectly, perhaps by failing to make appropriate contacts with the A/T-rich DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号