首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

2.
In adults, bone is the preferential target site for metastases from primary cancers of prostate, breast, lungs and thyroid. The tendency of these cancers to metastasize to bone is determined by the anatomical distribution of the blood vessels, by the genetic profile of the cancer cells and by the biological characteristics of the bone microenvironment that favour the growth of metastatic cells of certain cancers. Metastases to bone may have either an osteolytic or an ostoblastic phenotype. The interaction in the bone microenvironment between biological factors secreted by metastatic cells, and by osteoblasts and osteoclasts, and the osteolytic and osteoblastic factors released from the organic matrix mediate a vicious cycle characterized by metastatic growth and by ongoing progressive bone destruction. This interaction determines the phenotype of the metastatic bone disease.  相似文献   

3.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

4.

Background

Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings

Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.

Conclusion/Significance

Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.  相似文献   

5.
Breast cancer cells preferentially metastasize to bone, leading to the formation of primarily osteolytic lesions. Osteoprotegerin (OPG) plays multifactorial roles in the development of osteolytic bone metastases. An increase in the ratio of receptor activator of nuclear factor kappaB ligand (RANKL) to OPG increases osteoclastogenesis within the bone microenvironment. OPG also acts as a survival factor for cancer cells by protecting them from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis. This study compares OPG production in vitro in a number of breast cancer cell lines exhibiting both differences in metastatic capacity and in preferential metastasis to bone. Our studies demonstrated that OPG expression by MDA-231, MDA-MET, and MDA-231/K cancer cells was directly correlated with bone specific homing and colonization potential but not with metastasis of cancer cells to other organs; both in IL-1 beta stimulated and control cells. We also demonstrated expression of other bone-related markers including type I collagen, osteocalcin, osteopontin, and Runx2 in these cells. However, the generally lower expression of these markers in the bone selective cell line MDA-MET suggested that increased OPG expression in the bone specific variant was not merely a consequence of enhanced osteomimicry by these cells but that it has a significant role in the metastatic process. Co-culture of breast cancer cells with osteoblastic cells (hFOB 1.19) led to an overall downregulation in OPG production, which was not affected by the bone homing and colonization potential of the cell lines, suggesting that OPG alone is not indicative of osteolytic bone activity by breast cancer cells.  相似文献   

6.
Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.  相似文献   

7.
Metastatic breast cancer induces an osteoblast inflammatory response   总被引:4,自引:0,他引:4  
Breast cancer preferentially metastasizes to the skeleton, a hospitable environment that attracts and allows breast cancer cells to thrive. Growth factors released as bone is degraded support tumor cell growth, and establish a cycle favoring continued bone degradation. While the osteoclasts are the direct effectors of bone degradation, we found that osteoblasts also contribute to bone loss. Osteoblasts are more than intermediaries between tumor cells and osteoclasts. We have presented evidence that osteoblasts contribute through loss of function induced by metastatic breast cancer cells. Metastatic breast cancer cells suppress osteoblast differentiation, alter morphology, and increase apoptosis. In this study we show that osteoblasts undergo an inflammatory stress response in the presence of human metastatic breast cancer cells. When conditioned medium from cancer cells was added to human osteoblasts, the osteoblasts were induced to express increased levels of IL-6, IL-8, and MCP-1; cytokines known to attract, differentiate, and activate osteoclasts. Similar findings were seen with murine osteoblasts and primary murine calvarial osteoblasts. Osteoblasts are co-opted into creating a microenvironment that exacerbates bone loss and are prevented from producing matrix proteins for mineralization. This is the first study implicating osteoblast produced IL-6, IL-8 (human; MIP-2 and KC mouse), and MCP-1 as key mediators in the osteoblast response to metastatic breast cancer cells.  相似文献   

8.
Tumors metastatic to the bone produce factors that cause massive bone resorption mediated by osteoclasts in the bone microenvironment. Colony stimulating factor (CSF-1) is strictly required for the formation and survival of active osteoclasts, and is frequently produced by tumor cells. Here we hypothesize that the CSF-1 made by tumor cells contributes to bone destruction in osteolytic bone metastases. We show that high level CSF-1 protected osteoclasts from suppressive effects of transforming growth factor β (TGF-β). r3T cells, a mouse mammary tumor cell line that forms osteolytic bone metastases, express abundant CSF-1 in vitro as both a secreted and a membrane-spanning cell-surface glycoprotein, and we show that both the secreted and the cell-surface form of CSF-1 made by r3T cells can support osteoclast formation in co-culture experiments in the presence of RankL. Mice with r3T bone metastases have elevated levels of both circulating and bone-associated CSF-1, and the majority of CSF-1 found in bone metastases is associated with the tumor cells. These results support the idea that tumor-cell produced CSF-1 contributes to osteoclast development and survival in bone metastasis.  相似文献   

9.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p?=?0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p?=?0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   

10.
Bone is a common metastatic site for many cancers. Tumor cells located in the bone marrow cavity disturb the natural balance (bone remodelling) established between new bone formation performed by osteoblasts and bone resorption carried out by osteoclasts. Tumor cells produce many factors including growth factors and cytokines (PTHrP, ET-1, BMPs, others...) that stimulate either ostoclast activity leading to osteolytic lesions or osteoblast activity generating osteosclerotic bone metastases. Growth factors released from resorbed bone matrix or throughout osteoblastic bone formation sustain tumor growth. Therefore, bone metastases are the site of vicious cycles wherein tumor growth and bone metabolism sustain each other.  相似文献   

11.
Bone is one of the most common sites of breast cancer metastasis while bone sialoprotein (BSP) is thought to play an important role in bone metastasis of malignant tumors. The objective of this study is to determine the role of BSP overexpression in osteolytic metastasis using two homozygous transgenic mouse lines in which BSP expression is elevated either in all the tissues (CMV-BSP mice) or only in the osteoclasts (CtpsK-BSP mice). The results showed that skeletal as well as systemic metastases of 4T1 murine breast cancer cells were dramatically increased in CMV-BSP mice. In CtpsK-BSP mice, it was found that targeted BSP overexpression in osteoclasts promoted in vitro osteoclastogenesis and activated osteoclastic differentiation markers such as Cathepsin K, TRAP and NFAT2. MicroCT scan demonstrated that CtpsK/BSP mice had reduced trabecular bone volume and bone mineral density (BMD). The real-time IVIS Imaging System showed that targeted BSP overexpression in osteoclasts promoted bone metastasis of breast cancer cells. The osteolytic lesion area was significantly larger in CtpsK/BSP mice than in the controls as demonstrated by both radiographic and histomorphometric analyses. TRAP staining demonstrated a twofold increase in the number of osteoclasts in the bone lesion area from CtpsK/BSP mice compared with that from wild type mice. We conclude that host tissue-derived BSP also plays important roles in breast cancer metastasis through inducing tumor cell seeding into the remote host tissues. Furthermore, osteoclast-derived BSP promotes osteoclast differentiation in an autocrine manner and consequently promotes osteolytic bone metastasis of breast cancer.  相似文献   

12.
The pliability of cancer cells to mutate into several different phenotypes in an attempt to find one that will survive and colonize at the metastatic site is a tremendous "hurdle" to overcome in designing novel cancer therapeutics. New targets of therapy are essential if we are to effectively overcome the evasiveness of cancer. The interaction between the tumor cell and the surrounding microenvironment creates a vicious cycle that perpetuates disease survival and progression. The future of cancer therapy resides in the ability to focus on the recruited and exploited relationships of the cancer cell with the host environment. These therapies target cancer cell growth early and interrupt the vicious cycle that is created by the tumor cells interacting with bone components by inhibiting osteoclasts, osteoblasts, stromal cells, and endothelial cells. They alter the bone microenvironment, creating a hostile "soil" that prevents the "seed" from developing into bone metastases and represent a potential new platform for the development of prostate cancer therapeutics.  相似文献   

13.
Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone.  相似文献   

14.
Breast cancers commonly cause osteolytic metastases in bone, a process that is dependent upon osteoclast-mediated bone resorption, but the mechanism responsible for tumor-mediated osteoclast activation has not yet been clarified. In the present study we utilized a well-known human breast cancer cell line (MDA-231) in order to assess its capability to influence osteoclastogenesis in human bone marrow cultures and bone resorption in fully differentiated osteoclasts. We demonstrated that conditioned medium (CM) harvested from MDA-231 increased the formation of multinucleated TRAP-positive cells in bone marrow cultures. Bone resorption activity of fully differentiated human osteoclasts and of osteoclast-like cell lines, from giant cell tumors of bone (GCT), was highly increased by the presence of MDA-231 CM. Moreover, while MDA-231 by themselves did not produce IL-6 tumor cell, CM increased the secretion of IL-6 by primary human osteoclasts and GCT cell lines compared to untreated controls. These data suggest that MDA-231 produce osteoclastic activating factor(s) that increase both osteoclast formation in bone marrow culture and bone resorption activity by mature cells. Moreover, breast cancer cells stimulate IL-6 secretion by osteoclasts that is one of the factors known to supports osteoclastogenesis.  相似文献   

15.
TGF-β regulates several steps in cancer metastasis, including the establishment of bone metastatic lesions. TGF-β is released from bone during osteoclastic bone resorption and it stimulates breast cancer cells to produce osteolytic factors such as interleukin 11 (IL-11). We conducted a cell-based siRNA screen and identified heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) as a critical gene for TGF-β-induced IL-11 production in highly bone metastatic MDA-MB-231(SA) breast cancer cells. HS6ST2 attaches sulfate groups to glucosamine residues in heparan sulfate glycosaminoglycans. We subsequently showed how heparin and a high-molecular-weight Escherichia coli K5-derived heparin-like polysaccharide (K5-NSOS) inhibited TGF-β-induced IL-11 production in MDA-MB-231(SA) cells. In addition, K5-NSOS inhibited bone resorption activity of human osteoclasts in vitro. We evaluated the therapeutic potential of K5-NSOS and fragmin in a mouse model of breast cancer bone metastasis. MDA-MB-231(SA) cells were inoculated into the left cardiac ventricle of athymic nude mice which were treated with fragmin, K5-NSOS, or vehicle once a day for four weeks. Both heparin-like glycosaminoglycans inhibited weight reduction, decreased osteolytic lesion area, and reduced tumor burden in bone. In conclusion, our data imply novel mechanisms involved in TGF-β induction and support the critical role of heparan sulfate glycosaminoglycans in cancer metastasis as well as indicate that K5-NSOS is a potential antimetastatic and antiresorptive agent for cancer therapy. This study illustrates the potential to translate in vitro siRNA screening results toward in vivo therapeutic concepts.  相似文献   

16.
Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.  相似文献   

17.
Breast cancer cells exhibit a predilection for metastasis to bone. There, the metastases usually bring about bone loss with accompanying pain and loss of function. One way that breast cancer cells disrupt the normal pattern of bone remodeling is by activating osteoclasts, the bone degrading cells. Nevertheless, targeting the osteoclasts does not cure the disease or result in bone repair. These observations indicate that osteoblast function also may be compromised. The objective of this study was to investigate the interaction of metastatic breast cancer cells with osteoblasts. Human metastatic breast cancer cells, MDA-MB-435 or MDA-MB-231, or their conditioned media were co-cultured with a human osteoblast line hFOB1.19. The breast cancer cells caused an increase in the prevalence of apoptotic osteoblasts. Apoptotic osteoblasts detected by the TUNEL assay or by caspase activity increased approximately two to fivefold. This increase was not seen with non-metastatic MDA-MB-468 cells. In an investigation of the mechanism, it was determined that the hFOB1.19 cells expressed fas and that fas was functional. Likewise the hFOB1.19 cells were susceptible to TNF-alpha, but this cytokine was not detected in the conditioned medium of the breast cancer cells. This study indicates that osteoblasts are the target of breast cancer cell-induced apoptosis, but fas/fas-ligand and TNF-alpha, two common initiators of cell death, are probably not involved in this aspect of the metastases/bone cell axis. There are several mechanisms that remain to be explored in order to determine how breast cancer cells bring about osteoblast apoptosis. Even though the specific initiator of apoptosis remains to be identified, the results of this study suggest that the mechanism is likely to be novel.  相似文献   

18.
We investigated the utility of CWR22 human prostate cancer cells for modeling human metastatic prostate cancer, specifically their ability to induce bone formation following intra-tibial injections in the nude rat. Prostate cancer is unique in regard to its tropism for bone and ability to induce new bone formation. In contrast to humans, other mammalian species rarely develop prostatic cancer spontaneously upon aging and do not have the propensity for bone metastasis that is the hallmark of cancer malignancy in men. We chose human prostate cancer cell line CWR22 based on its properties, which closely resemble all of the features that characterize the early stages of prostatic cancer in human patients including slow growth rate, hormone dependence/independence and secretion of prostate-specific antigen. When CWR22 cells were injected directly into the proximal tibia of immunodeficient male rats, both osteoblastic and osteolytic features became evident after 4 to 6 weeks, with elevated levels of serum prostate-specific antigen. However, osteosclerosis dominates the skeletal response to tumor burden. Radiological and histological evidence revealed osteosclerotic lesions with trabeculae of newly formed bone lined by active osteoblasts and surrounded by tumor cells. Toward the end of the 7-week study, osteolytic bone lesions become more evident on X-rays. Paraffin and immunohistochemical evaluations revealed mature bone matrix resorption as evidenced by the presence of many tartrate resistant acid phosphatase positive multinucleated osteoclasts. We conclude that the CWR22 human prostate cell line used in an intra-tibial nude rat model provides a useful system to study mechanisms involved in osteoblastic and osteolytic bony metastases. This type of in vivo model that closely mimics all major features of metastatic disease in humans may provide a critical tool for drug development efforts focused on developing integrated systemic therapy targeting the tumor in its specific primary or/and metastatic microenvironments. In addition to targeting bone marrow stroma, this strategy will help to overcome classical drug resistance seen at the sites of prostate cancer metastasis to bones.  相似文献   

19.

Background

Breast to bone metastases frequently induce a “vicious cycle” in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.

Methodology/Principal Findings

To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays).

Conclusion/Significance

Collectively, these studies identify a novel “mini-vicious cycle” between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号