首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Simultaneous field measurements of transpiration and sap flow were performed on short-rotation Salix viminalis trees ranging in diameter from 1.5 to 3.5 cm (2-year-old shoots on 8-year-old stumps). Transpiration was measured using an open-top ventilated chamber enclosing the whole foliage of a tree. Sap flow was measured using a tree-trunk heat balance (THB) technique with a constant temperature difference and variable heat input. Both the instantaneous and daily values of water flux measured by the two absolute techniques agreed well with a difference of up to about 5%. In July, the hourly transpiration reached a maximum of about 0.2 kg m–2 (leaf area) or 0.45 kg tree–1, whereas maximum daily integrals reached 4 kg tree–1. The response of sap flow rate to abrupt flux change when inducing emboli by cutting-off the stem was very rapid: the registered signal dropped by 85% within 10 min for a specimen with a projected leaf area of 2 m2. For S. viminalis trees, transpiration was linearly correlated with stem cross-sectional area and with leaf area.  相似文献   

2.
At several heights and times of day within a crop of Zea mays, internal leaf diffusion resistance (ri) and external boundary layer diffusion resistance (ra) were evaluated by measuring the temperature of a transpiring and a non-transpiring leaf (simulated by covering both sides of a normal leaf with strips of poly-ethylene tape), and by measuring the immediate air temperature, humidity and windspeed.

Both ra and ri increased with depth into the crop. However, ra generally was less than 10% of ri.

Profiles of latent-heat flux density and source intensity of transpiration showed that transpiration corresponded roughly to foliage distribution (with an upward shift) and were not similar to the profile of radiation absorption.

The data were compared with heat budget data. The 2 approaches yielded quite similar height distributions of transpiration per unit leaf area and total transpiration resistance.

The total crop resistance to transpiration was computed as 0.027 min cm−1. This compares to Monteith's values of 0.017 to 0.040 min cm−1 for beans (Phaseolus vulgaris L.), and Linacre's values of 0.015 to 0.020 min cm−1 for turf.

  相似文献   

3.
应用热平衡法测定玉米/大豆间作群体内作物的蒸腾量   总被引:2,自引:0,他引:2  
通过田间试验采用基于热平衡法的茎流计测定玉米/大豆条带间作群体内作物的蒸腾规律.结果表明:间作群体内,玉米和大豆植株的茎流速率在晴天呈单峰曲线,在阴天则呈多峰曲线.植株的茎流受多个环境因子的影响,其中太阳辐射是影响植株茎流最主要的气象因子.玉米和大豆的单株日茎流量与多个气象因子间存在较好的相关关系,达到极显著水平.茎流观测期内(2008年6月1-30日),间作群体内玉米植株的日均蒸腾量(1.44 mm·d-1)为大豆(0.79 mm·d-1)的1.8倍,玉米和大豆植株的蒸腾量分别占间作群体总蒸腾量的64%和36%.考虑到作物的茎直径和叶面积的空间变异,安装一定数量的茎流探头对于准确测定植株茎流是十分必要的.  相似文献   

4.
Abstract Stomatal conductance per unit leaf area in well-irrigated field- and greenhouse-grown sugarcane increased with leaf area up to 0.2 m2 plant 1, then declined so that maximum transpiration per plant tended to saturate rather than increase linearly with further increase in leaf area. Conductance to liquid water transport exhibited parallel changes with plant size. This coordiantion of vapour phase and liquid phase conductances resulted in a balance between water loss and water transport capacity, maintaining leaf water status remarkably constant over a wide range of plant size and growing conditions. The changes in stomatal conductance were not related to plant or leaf age. Partial defoliation caused rapid increases in stomatal conductance, to re-establish the original relationship with remaining leaf area. Similarly, pruning of roots caused rapid reductions in stomatal conductance, which maintained or improved leaf water status. These results suggest that sugarcane stomata adjusted to the ratio of total hydraulic conductance to total transpiring leaf area. This could be mediated by root metabolites in the transpiration stream, whose delivery per unit leaf area would be a function of the relative magnitudes of root system size, transpiration rate and leaf area.  相似文献   

5.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

6.
Ewers FW  Fisher JB  Chiu ST 《Plant physiology》1989,91(4):1625-1631
To determine the efficiency of xylem conductance in the liana (woody vine) Bauhinia fassoglensis Kotschy ex Schweinf., we measured hydraulic conductance per unit stem length (measured Kh), leaf-specific conductivity (LSC = Kh/distal leaf area), transpiration rate (E), xylem water potential (ε), vessel number, and vessel diameter. The measured Kh was 49% (se = 7%) of the predicted Kh from Poiseuille's law. The mean LSC for unbranched stem segments was 1.10 × 10−8 square meters per megapascal per second (se = 0.07). LSCs were much lower (about 0.2) at branch junctions. At midday, with E at 7 × 10−8 meters per second, the measured drop in ε was about 0.08 megapascal per meter along the stems and branches and about 0.27 megapascal in going from stem to leaf. In addition, there was a drop of about 0.20 megapascal at branch junctions as predicted by E/LSC. In diurnal measurements leaf ε never dropped below about −1.2 megapascal. For long (e.g. 16 meters) stems, the predicted mid-day drop in ε through the xylem transport system might be great enough to have substantial physiological impact.  相似文献   

7.
Experiments were conducted to determine whether the nitrate flux to the leaves or the nitrate content of the leaves regulated the nitrate reductase activity (NRA) in leaves of intact maize (Zea mays L.) seedlings having low water potentials (ψw) when other environmental and endogenous factors were constant. In seedlings that were desiccated slowly, the nitrate flux, leaf nitrate content, and NRA decreased as ψw decreased. The decrease in nitrate flux was caused by a decrease in both the rate of transpiration and the rate of nitrate delivery to the transpiration stream. Upon rewatering, the recovery in NRA was correlated with the nitrate flux but not the leaf nitrate content.  相似文献   

8.
Using water infiltration of the plant and individual shoots with the subsequent intercellular liquid extraction by the pressure chamber, dynamics of the movement 14C-photosynthates from cell to apoplast, and 14C distribution among photosynthetic products in mesophyll cells and apoplast were studied. The relative quantity of 14C-photosynthetes in leaf apoplast depended on growing conditions; drought increased, and nitrate supply decreased it. When the middle leaves absorbed 14CO2, photosynthates moving down in stem phloem appeared in intercellular space, where they were transported up by transpiration stream. 14C-photosynthates entering to the apex and young leaves were utilized a accumulated, and photosynthates transported to the mature leaves were reloaded into the phloem and reexported. Thus, photosynthates circulated through the plant and were redistributed to the plant organs according to their transpiration. In leaf apoplast photosynthetic sucrose was partly hydrolyzed to glucose and fructose. This increased under high nitrogen supply. The result indicate that apoplast sucrose hydrolysis is the basic cause of the reduction of photosynthate flux from leaves when the nitrate concentration in soil increases.  相似文献   

9.
During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3°C, 0.2-0.4 kPa vapor pressure deficit, 100 μmol·m−2·s−1 photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3°C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3°C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3°C compared with 20°C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.  相似文献   

10.
Xylem-to-phloem transfer in young vegetative soybean (Glycine max [L.] Merr.) plants (V4 stage) was identified as the difference in the distribution of [14C]inulin, a xylem marker, and [14C]aminoisobutyric acid (AIB), a synthetic amino acid, fed via the transpiration stream. Since [14C]AIB was retained in the stem to some extent, whereas [14C]inulin was not, the distribution of these marker compounds in each leaf was expressed as a percentage of the total [14C] radioactivity recovered in the foliage. The developing third trifoliolate was a consistent and reliable indicator of xylem-to-phloem transfer. The phloem stream provided to the developing trifoliolate up to fourfold the relative proportion of solute received from the xylem stream; this was markedly reduced by increased light intensity and consequently water flow through the xylem. Evidence from heat girdling experiments is discussed with respect to the vascular anatomy of the soybean plant, and interpreted to suggest that direct xylem-to-phloem transfer in the stem, in the region of the second node, accounted for about one-half of the AIB supplied to the developing trifoliolate, with the remainder being provided from the second trifoliolate. Since AIB is not metabolized it seems likely that rapid transfer within the second trifoliolate occurred as direct veinal transfer rather than indirect cycling through the mesophyll. This study confirmed that xylem-to-phloem transfer plays a major role in the partitioning of nitrogen for early leaf development.  相似文献   

11.
Munns R  King RW 《Plant physiology》1988,88(3):703-708
Xylem sap was collected from the transpiration stream of wheat (Triticum aestivum L.) plants and assayed for the presence of an inhibitor of transpiration using leaves detached from well-watered plants. Transpiration of detached leaves was reduced by nearly 60% by sap collected from plants in drying soil, and to a lesser extent (about 25%) by sap from plants in well-watered soil. As the soil dried the abscisic acid (ABA) concentration in the sap increased by about 50 times to 5 × 10−8 molar. However, the ABA in the sap did not cause its inhibitory activity. Synthetic ABA of one hundred times this concentration was needed to reduce transpiration rates of detached leaves to the same extent. Furthermore, inhibitory activity of the sap was retained after its passage through an immunoaffinity column to remove ABA. Xylem sap was also collected by applying pressure to the roots of plants whose leaf water status was kept high as the soil dried. Sap collected from these plants reduced transpiration to a lesser extent than sap from nonpressurised plants. This suggests that the inhibitory activity was triggered partly by leaf water deficit and partly by root water deficit.  相似文献   

12.
Recent studies have provided evidence of a large flux of root-respired CO2 in the transpiration stream of trees. In our study, we investigated the potential impact of this internal CO2 transport on aboveground carbon assimilation and CO2 efflux. To trace the transport of root-respired CO2, we infused a 13C label at the stem base of field-grown Populus deltoides Bartr. ex. Marsh trees. The 13C label was transported to the top of the stem and throughout the crown via the transpiration stream. Up to 17% of the 13C label was assimilated by chlorophyll-containing tissues. Our results provide evidence of a mechanism for recycling respired CO2 within trees. Such a mechanism may have important implications for how plants cope with predicted increases in intensity and frequency of droughts. Here, we speculate on the potential significance of this recycling mechanism within the context of plant responses to climate change and plants currently inhabiting arid environments.  相似文献   

13.
Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 × 1010 rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the world's most important cereal crops.  相似文献   

14.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

16.
Many plant water use models predict leaves maximize carbon assimilation while minimizing water loss via transpiration. Alternate scenarios may occur at high temperature, including heat avoidance, where leaves increase water loss to evaporatively cool regardless of carbon uptake; or heat failure, where leaves non‐adaptively lose water also regardless of carbon uptake. We hypothesized that these alternative scenarios are common in species exposed to hot environments, with heat avoidance more common in species with high construction cost leaves. Diurnal measurements of leaf temperature and gas exchange for 11 Sonoran Desert species revealed that 37% of these species increased transpiration in the absence of increased carbon uptake. High leaf mass per area partially predicted this behaviour (r2 = 0.39). These data are consistent with heat avoidance and heat failure, but failure is less likely given the ecological dominance of the focal species. These behaviours are not yet captured in any extant plant water use model.  相似文献   

17.
The water relations and hydraulic architecture of a tropical tree (Schefflera morototoni) and of two temperate species (Acer saccharum and Thuja occidentalis) are reported. Among the water relations parameters measured were leaf and stem water storage capacity, leaf water potential, transpiration, and vulnerability of stems to cavitation and loss of hydraulic conductivity by embolisms. Among the hydraulic architecture parameters measured were hydraulic conductivity per unit pressure gradient, specific conductivity, leaf-specific conductivity, and Huber value. In terms of vulnerability of stems to cavitation, stem and leaf capacitances, and leaf-specific conductivity, all three species followed the same sequence: Schefflera > Acer > Thuja. It is argued here that the high stem capacitance and high leaf-specific conductivity of Schefflera are necessary to compensate for its high vulnerability to cavitation. Extractable water storage per unit leaf area in Schefflera stems is >100 times that of Acer and may permit the species to survive unusually long, dry seasons in Panama. Although Schefflera frequently grows >20 meters, the biggest resistance to water flow in the shoots resides in the leaves.  相似文献   

18.
高永  张瀚文  虞毅  王淮亮  王震  董雪  张燕 《生态学报》2014,34(20):5721-5727
利用远红外热成像技术获取半日花叶温,并根据"三温模型"原理测定半日花的蒸腾速率,结果表明:在晴朗天气条件下,测定时间段内半日花蒸腾速率的日变化曲线呈"单峰型",且峰值出现在15:00,最低值出现在17:00;叶温在测定时间内均高于气温,叶温与气温差最大为9.58 K,最小为0.71 K;在半日花所测冠幅范围内,冠幅越大,其蒸腾速率越大,蒸腾扩散系数越小。样本中,最大冠幅半日花测定时间内的蒸腾速率均值最高,为9.42×10-6MJ m-2d-1,蒸腾扩散系数最低,为0.41;最小冠幅半日花测定时间内的蒸腾速率均值最低,为4.18×10-6MJ m-2d-1,蒸腾扩散系数最高,为0.76。试验测定结果与传统测定技术结果相比较表明:利用远红外热成像技术非接触无损伤测定半日花蒸腾速率具有可行性。  相似文献   

19.
Photosynthetic CO2 assimilation, transpiration, ribulose-1,5-bisphosphate carboxylase (RuBPCase), and soluble protein were reduced in leaves of water-deficit (stress) `Valencia' orange (Citrus sinensis [L.] Osbeck). Maximum photosynthetic CO2 assimilation and transpiration, which occurred before midday for both control and stressed plants, was 58 and 40%, respectively, for the stress (−2.0 megapascals leaf water potential) as compared to the control (−0.6 megapascals leaf water potential). As water deficit became more severe in the afternoon, with water potential of −3.1 megapascals for the stressed leaves vs. −1.1 megapascals for control leaves, stressed-leaf transpiration declined and photosynthetic CO2 assimilation rapidly dropped to zero. Water deficit decreased both activation and total activity of RuBPCase. Activation of the enzyme was about 62% (of fully activated enzyme in vitro) for the stress, compared to 80% for the control. Water deficit reduced RuBPCase initial activity by 40% and HCO3/Mg2+-saturated activity by 22%. However, RuBPCase for both stressed and control leaves were similar in Kcat (25 moles CO2 per mole enzyme per second) and Km for CO2 (18.9 micromolar). Concentrations of RuBPCase and soluble protein of stressed leaves averaged 80 and 85%, respectively, of control leaves. Thus, reductions in activation and concentration of RuBPCase in Valencia orange leaves contributed to reductions in enzyme activities during water-deficit periods. Declines in leaf photosynthesis, soluble protein, and RuBPCase activation and concentration due to water deficit were, however, recoverable at 5 days after rewatering.  相似文献   

20.
Emmert FH 《Plant physiology》1966,41(2):244-247
A technique was developed for estimating penetration of P32 across roots of intact plants (Phaseolus vulgaris) by measuring the level of isotope in the xylem stream. Penetration was defined as movement from the root surface to the xylem sap. The xylem sap measurement for P32 was made in the stem as the material ascended the plant in the transpiration stream. Stems were held near 0° to arrest metabolic concentration of isotope adjacent to the xylem column. A 3 layer environment control system was constructed to allow stem chilling in a manner that would not interfere with the environments of the roots or foliage. Despite these precautions, some extra-xylary build-up of 32P occurred in the chilled stem. The mathematical function of the extra-xylary fraction was derived, and the difference between this value and total P32 in the stem represented xylem sap isotope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号