首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hsieh MT  Chen RH 《PloS one》2011,6(4):e18988
The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities) ATPase superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-sensitive cdc48-3 mutant is largely arrested at mitosis at 37°C, whereas the mutant is also delayed in G1 progression at 38.5°C. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5°C. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5°C, suggesting that Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5°C is a consequence of cell wall defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall integrity in order for normal cell growth and division.  相似文献   

3.
Elucidation of the 3D structure of histidine ammonia-lyase (HAL, EC 4.3.1.3) from Pseudomonas putida by X-ray crystallography revealed that the electrophilic prosthetic group at the active site is 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) [Schwede, T.F., Rétey, J., Schulz, G.E. (1999) Biochemistry, 38, 5355-5361]. To evaluate the importance of several amino-acid residues at the active site for substrate binding and catalysis, we mutated the following amino-acid codons in the HAL gene: R283, Y53, Y280, E414, Q277, F329, N195 and H83. Kinetic measurements with the overexpressed mutants showed that all mutations resulted in a decrease of catalytic activity. The mutants R283I, R283K and N195A were approximately 1640, 20 and 1000 times less active, respectively, compared to the single mutant C273A, into which all mutations were introduced. Mutants Y280F, F329A and Q277A exhibited approximately 55, 100 and 125 times lower activity, respectively. The greatest loss of activity shown was in the HAL mutants Y53F, E414Q, H83L and E414A, the last being more than 20 900-fold less active than the single mutant C273A, while H83L was 18 000-fold less active than mutant C273A. We propose that the carboxylate group of E414 plays an important role as a base in catalysis. To investigate a possible participation of active site amino acids in the formation of MIO, we used the chromophore formation upon treatment of HAL with l-cysteine and dioxygen at pH 10.5 as an indicator. All mutants, except F329A showed the formation of a 338-nm chromophore arising from a modified MIO group. The UV difference spectra of HAL mutant F329A with the MIO-free mutant S143A provide evidence for the presence of a MIO group in HAL mutant F329A also. For modelling of the substrate arrangement within the active site and protonation state of MIO, theoretical calculations were performed.  相似文献   

4.
Variants of the Thermoascus aurantiacus Eg1 enzyme with higher catalytic efficiency than wild-type were obtained via site-directed mutagenesis. Using a rational mutagenesis approach based on structural bioinformatics and evolutionary analysis, two positions (F16S and Y95F) were identified as priority sites for mutagenesis. The mutant and parent enzymes were expressed and secreted from Pichia pastoris and the single site mutants F16S and Y95F showed 1.7- and 4.0-fold increases in k(cat) and 1.5- and 2.5-fold improvements in hydrolytic activity on cellulosic substrates, respectively, while maintaining thermostability. Similar to the parent enzyme, the two variants were active between pH 4.0 and 8.0 and showed optimal activity at temperature 70°C at pH 5.0. The purified enzymes were active at 50°C for over 12 h and retained at least 80% of initial activity for 2 h at 70°C. In contrast to the improved hydrolysis seen with the single mutation enzymes, no improvement was observed with a third variant carrying a combination of both mutations, which instead showed a 60% reduction in catalytic efficiency. This work further demonstrates that non-catalytic amino acid residues can be engineered to enhance catalytic efficiency in pretreatment enzymes of interest.  相似文献   

5.
6.
Fifteen mutant genes in six loop residues and eight mutant genes in five conserved noncatalytic active site residues of Thermobifida fusca Cel6B were constructed, cloned and expressed in Escherichia coli or Streptomyces lividans. The mutant enzymes were assayed for catalytic activity on carboxymethyl cellulose (CMC), swollen cellulose (SC), filter paper (FP), and bacterial microcrystalline cellulose (BMCC) as well as cellotetraose, cellopentaose, and 2, 4-dinitrophenyl-beta-D-cellobioside. They were also assayed for ligand binding, enzyme processivity, thermostability, and cellobiose feedback inhibition. Two double Cys mutations that formed disulfide bonds across two tunnel forming loops were found to significantly weaken binding to ligands, lower all activities, and processivity, demonstrating that the movement of these loops is important but not essential for Cel6B function. Two single mutant enzymes, G234S and G284P, had higher activity on SC and FP, and the double mutant enzyme had threefold and twofold higher activity on these substrates, respectively. However, synergism with endocellulase T. fusca Cel5A was not increased with these mutant enzymes. All mutant enzymes with lower activity on filter paper, BMCC, and SC had lower processivity. This trend was not true for CMC, suggesting that processivity in Cel6B is a key factor in the hydrolysis of insoluble and crystalline cellulose. Three mutations (E495D, H326A and W329C) located near putative glycosyl substrate subsites -2, +1 and +2, were found to significantly increase resistance to cellobiose feedback inhibition. Both the A229V and L230C mutations specifically decreased activity on BMCC, suggesting that BMCC hydrolysis has a different rate limiting step than the other substrates. Most of the mutant enzymes had reduced thermostability although Cel6B G234S maintained wild-type thermostability. The properties of the different mutant enzymes provide insight into the catalytic mechanism of Cel6B.  相似文献   

7.
An efficient β-glucosidase (βG)-producing strain, Wickerhamomyces anomalus BS81, was isolated from naturally fermented olive brine and identified based on PCR/restriction fragment length polymorphism of the rDNA internal transcribed spacer and sequence analysis of the D1/D2 region of the 26S rRNA gene. The hydrolytic activity of the βG had an optimum pH of 8.5 and an optimum temperature of 35 °C. The enzyme had high substrate specificity and high catalytic efficiency (K(m) 0.99 mM, V(max) 14 U g(-1) of cells) for p-nitrophenyl-β-d-glucopyranoside. The enzyme was activated by increasing concentrations of NaCl, with maximum activity at 150 g L(-1) NaCl. Although βGs have been purified and characterized from several other sources, the W. anomalusβG is unique among βGs because its relative maximum activity occurs at alkaline pH and 35 °C. Moreover, the yeast strain has esterase activity that acts synergistically with βG to degrade oleuropein to debitter table olives and olive oil.  相似文献   

8.
Bacteria with reduced DNA polymerase I activity have increased sensitivity to killing by chain-terminating nucleotides (S. A. Rashbaum and N. R. Cozzarelli, Nature 264:679-680, 1976). We have used this observation as the basis of a genetic strategy to identify mutations in the dnaE (polC) gene of Escherichia coli that alter sensitivity to 2',3'-dideoxyadenosine (ddA). Two dnaE (polC) mutant strains with increased sensitivity to ddA and one strain with increased resistance were isolated and characterized. The mutant phenotypes are due to single amino acid substitutions in the alpha subunit, the protein product of the dnaE (polC) gene. Increased sensitivity to ddA is produced by the L329F and H417Y substitutions, and increased resistance is produced by the G365S substitution. The L329F and H417Y substitutions also reduce the accuracy of DNA replication (the mutator phenotype), while the G365S substitution increases accuracy (the antimutator phenotype). All of the amino acid substitutions are in conserved regions near essential aspartate residues. These results prove the effectiveness of the genetic strategy in identifying informative dnaE (polC) mutations that can be used to elucidate the molecular basis of nucleotide interactions in the alpha subunit of the DNA polymerase III holoenzyme.  相似文献   

9.
The non-canonical base-pair C2475/G2529 joins helices 89 and 91 of the 23S rRNA in the large subunit of E. coli ribosomes. These nucleotides are located at the "crossroads" between the peptidyl transferase center, the sarcin-ricin loop and the GTPase-associated center. We probed the functional role of nucleotides C2475/G2529 by the mutations C2475G, C2475G/G2529C and deltaA2471/U2479 of 23S rRNA. All these mutations had no influence on the elongation factors activity but had different effects on the cell growth, 23S rRNA conformation and translation initiation. C2475G/G2529C and C2475G mutations led to more or less substantial decrease in IF2.GDPNP binding to the ribosomes, and IF2-assisted initiation complex formation. Ribosome-dependent GTPase activity of IF2 was enhanced by both C2475G/G2529C and C2475G mutations. Mutation deltaA2471/U2479 has no influence on IF2.GDPNP binding to the ribosome, but reduces IF2-dependent formation of initiation complex and the ribosome-dependent GTPase activity. Thus, the contact between helices 89 and 91 is important for efficient IF2 functioning in translation initiation.  相似文献   

10.
Two N-terminally truncated variants of the esterase E34Tt from Thermus thermophilus HB27 (YP_004875.1) were expressed in Kluyveromyces lactis. Production and biochemical properties of both recombinant proteins were investigated. The esterase activity was greatly increased compared to the wild-type strain. In particular, the extracellular production of the ΔN16 variant (KLEST-3S) was 50-fold higher than that obtained with T. thermophilus HB27. Response surface methodology was applied to describe the pH and temperature dependence of both activity and stability. When compared with the wild type esterase, the optimal temperature of reaction decreased 35 and 15 °C for ΔN16 and ΔN26, respectively. KLEST-3S showed a maximum of activity at pH 7.5 and 47.5 °C, and maximal stability at pH 8.1 and 65 °C. KLEST-5A (ΔN26) did not show an absolute maximum of activity. However, best results were obtained at 40 °C and pH 8.5. KLEST-5A showed also a lower stability. In the presence of a surfactant, both proteins showed lower stability at 85 °C (t(?)< 5 min) than the wild-type enzyme (t(?)=135 min). However, in the absence of detergent, the stability of KLEST-3S was higher (t(?)=230 min, at 85 °C) than that of the mutant KLEST-5A (12 min) or the wild type enzyme (19 min). Minor differences were observed in the substrate specificity. Our results suggest that the N-terminal segment is critical for maintaining the hyperthermophilic function and stability.  相似文献   

11.
Progamic processes are particularly temperature-sensitive and, in lowland plants, are usually drastically reduced below 10 °C and above 30 °C. Little is known about how effectively sexual processes of mountain plants function under the large temperature fluctuations at higher altitudes. The present study examines duration and thermal thresholds for progamic processes in six common plant species (Cerastium uniflorum, Gentianella germanica, Ranunculus alpestris, R. glacialis, Saxifraga bryoides, S. caesia) from different altitudinal zones in the European Alps. Whole plants were collected from natural sites shortly before anthesis and kept in a climate chamber until further processing. Flowers with receptive stigmas were hand-pollinated with allopollen and exposed to controlled temperatures between -2 and 40 °C. Pollen performance (adhesion to the stigma, germination, tube growth, fertilisation) was quantitatively analysed, using the aniline blue fluorescence method. Pollen adhesion was possible from -2 to 40 °C. Pollen germination and tube growth occurred from around 0 to 35 °C in most species. Fertilisation was observed from 5 to 30-32 °C (0-35 °C in G. germanica). The progamic phase was shortest in G. germanica (2 h at 30 °C, 12 h at 5 °C, 24 h at 0 °C), followed by R. glacialis (first fertilisation after 2 h at 30 °C, 18 h at 5 °C). In the remaining species, first fertilisation usually occurred after 4-6 h at 30 °C and after 24-30 h at 5 °C. Thus, mountain plants show remarkably flexible pollen performance over a wide temperature range and a short progamic phase, which may be essential for successful reproduction in the stochastic high-mountain climate.  相似文献   

12.
13.
We have studied in vivo the phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli 50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fraction of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were under-represented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA-23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

14.
Most cystic fibrosis (CF) cases are caused by the ΔF508 mutation in the CF transmembrane conductance regulator (CFTR), which disrupts both the processing and gating of this chloride channel. The cell surface expression of ΔF508-CFTR can be "rescued" by culturing cells at 26-28 °C and treating cells with small molecule correctors or intragenic suppressor mutations. Here, we determined whether these various rescue protocols induce a ΔF508-CFTR conformation that is thermally stable in excised membrane patches. We also tested the impact of constitutive cytosolic loop mutations that increase ATP-independent channel activity (K978C and K190C/K978C) on ΔF508-CFTR function. Low temperature-rescued ΔF508-CFTR channels irreversibly inactivated with a time constant of 5-6 min when excised patches were warmed from 22 °C to 36.5 °C. A panel of CFTR correctors and potentiators that increased ΔF508-CFTR maturation or channel activity failed to prevent this inactivation. Conversely, three suppressor mutations in the first nucleotide binding domain rescued ΔF508-CFTR maturation and stabilized channel activity at 36.5 °C. The constitutive loop mutations increased ATP-independent activity of low temperature-rescued ΔF508-CFTR but did not enhance protein maturation. Importantly, the ATP-independent activities of these ΔF508-CFTR constructs were stable at 36.5 °C, whereas their ATP-dependent activities were not. Single channel recordings of this thermally stable ATP-independent activity revealed dynamic gating and unitary currents of normal amplitudes. We conclude that: (i) ΔF508-CFTR gating is highly unstable at physiologic temperature; (ii) most rescue protocols do not prevent this thermal instability; and (iii) ATP-independent gating and the pore are spared from ΔF508-induced thermal instability, a finding that may inform alternative treatment strategies.  相似文献   

15.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   

16.
从养殖池污泥中分离筛选了1株优良的鲟源嗜水气单胞菌拮抗芽孢杆菌G1,其对鲟源嗜水气单胞菌S1产生的抑菌圈直径为18.50 mm。通过API50CH细菌鉴定系统以及16S rRNA序列分析法,菌株G1被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),GenBank登录号HM245965.1,其16S rRNA序列与基因库中芽孢杆菌属菌株的16S rRNA序列有99%100%的同源性,而且与解淀粉芽孢杆菌Ba-74501(GenBank登录号:DQ422953.1)的亲缘关系最近。菌株G1的最适生长pH值为7,最适生长温度为30°C,其在30°C、200 r/min条件下的生长曲线为:0 6 h为生长延迟期,6 54 h为对数生长期,54 90 h为稳定期,90 h以后为衰亡期。此外,菌株G1对其他实验选用的病原性嗜水气单胞菌也表现出良好的拮抗活性。本实验结果有利于填补嗜水气单胞菌拮抗菌在分类地位、生物学特性等方面的不足,为鲟鱼嗜水气单胞菌病的生物防控提供科学资料。  相似文献   

17.
M F Brink  M P Verbeet    H A de Boer 《The EMBO journal》1993,12(10):3987-3996
The postulated central pseudoknot formed by regions 9-13/21-25 and 17-19/916-918 of 16S rRNA of Escherichia coli is phylogenetically conserved in prokaryotic as well eukaryotic species. This pseudoknot is located at the center of the secondary structure of the 16S rRNA and connects the three major domains of this molecule. We have introduced mutations into this pseudoknot by changing the base-paired residues C18 and G917, and the effect of such mutations on the ribosomal activity was studied in vivo, using a 'specialized' ribosome system. As compared with ribosomes having the wild-type pseudoknot, the translational activity of ribosomes containing an A, G or U residue at position 18 was dramatically reduced, while the activity of mutant ribosomes having complementary bases at positions 18 and 917 was at the wild-type level. The reduced translational activity of those mutants that are incapable of forming a pseudoknot was caused by their inability to form 70S ribosomal complexes. These results demonstrate that the potential formation of a central pseudoknot in 16S rRNA with any base-paired residues at positions 18 and 917 is essential to complete the initiation process.  相似文献   

18.
We constructed a library of chimeras from the major endoglucanase, CelA, of Clostridium thermocellum and a less stable endoglucanase CelB from Clostridium josui with multiple point mutations using low-fidelity family-shuffling method. Mutations that inactivated the enzyme were rapidly eliminated with high-throughput screening. The activities and thermostabilities of selected variants were evaluated, and four amino acid substitutions, K249R, P258S, S329N and E355G, were identified as having significant impact on the thermostability of CelA without affecting enzymatic activity. In the crystal structure of CelA, most of them are away from the activity cleft and are responsible for the stabilization of secondary structures.  相似文献   

19.
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ~65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.  相似文献   

20.
The objective of this study was to analyze differences in thermoregulation and water balance under conditions of heat load and water restriction between fat-tailed sheep (S) and Kacang goats (G). The daily intakes of food and water, daily outputs of urine and feces, rectal temperature, respiration rates, hematocrit values and plasma volumes of five shorn S and five G were determined over 10 days of four consecutive experimental conditions: (1) indoor--unrestricted water; (2) indoor--restricted water; (3) 10 h sunlight exposure--unrestricted water; and (4) 10 h sunlight exposure--restricted water. There was a 6- to 7-day adjustment period between two consecutive conditions. The study was conducted during the dry season. The animals were placed in individual cages, fed chopped native grass ad libitum and had free access to a urea-molasses multi-nutrient block. Under sunlight exposure with unrestricted water availability, S and G record an increase in the maximum rectal temperatures from 39.2°C to 40.2°C and from 39.9°C to 41.8°C, respectively. The thermoregulatory strategy used by S for maintaining a lower rectal temperature mostly depends on increasing the respiration rate as the main cooling mechanism. On the other hand, G apparently used sweating as the predominant mechanism for cooling. Moreover, G seemed to be more tolerable to higher heat storage and body temperature than S with a significant increase in plasma volume (P<0.01), and this may be beneficial to the animals for the prevention of water loss. Under restricted water condition in either indoor or outdoor environment, both species decreased their plasma volume significantly, but rectal temperatures were relatively maintained. In all experimental conditions, the daily total water exchanges (ml/kg0.82 per day) of S were significantly higher than G (P<0.01). However, when the percentages of the total daily water exchange were considered, the water lost through urination (38% to 39%), defecation (11% to 14%) and evaporation (46% to 49%) by S and G was not significantly different. Therefore, the results from this study clearly showed that S and G have different homeostatic strategies for the regulation of body temperature and fluid to cope with heat load and water restriction. These differences may have an important impact on the production management of S and G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号