首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tan L  Zhu D  Zhou W  Mi W  Ma L  He W 《Bioresource technology》2008,99(10):4460-4466
Choosing bio-material of Eichhornia crassipes from five plant materials through comparison on their exchangeable capacity to copper and carboxyl content, cellulose xanthogenate was prepared by raw fiber of E. crassipes with NaOH and CS(2). The exchange adsorption properties of the product on copper were investigated and the optimum preparing condition was obtained. The results showed that the adsorption capacity of cellulose xanthogenate of E. crassipes to copper was higher than that of other plant materials. Adsorption capacity to copper ion increased with pH value increasing, and was affected by different anions, but not by sodium ion. Adsorption rate was fast and the dynamics of adsorption could be described by a first order kinetic equation.  相似文献   

2.
3.
Copper containing cellulose material is of growing interest, e.g. offering alternative in the field of antimicrobials. Solutions of copper d-gluconate complexes (Cu(2+)-DGL) were used to introduce copper ions into a swollen cellulosic matrix. A ligand exchange mechanism forms the chemical basis of the sorption process. Copper sorption in cellulose was studied in the range between pH 6 and 13. An estimate for the complex stabilities of the Cu-cellulose system could be derived from the calculated species distribution of the different Cu(2+)-DGL complexes present. Spectrophotometry and cyclic voltammetry of Cu(2+)-DGL complex solution were used to confirm the presence of different species participating in the ligand exchange reaction. The pH dependent uptake of Cu(2+) ions in the cellulose matrix can be explained on the basis of the relative stabilities of Cu(2+)-DGL complex vs. Cu(2+)-cellulose complexes. In comparison to pH 10, higher copper content was observed at pH 6 and 13. Copper content was limited by carboxyl content of cellulosic materials, thus in analogy to the structure of Cu(2+)-DGL complexes participation of the carboxyl group as complex forming site is proposed. At high Cu(2+)-concentration and longer time of immersion in the copper complex solutions formation of solid deposits was observed on the surface of the treated fibres.  相似文献   

4.
Adsorption of copper and zinc in lignimerin (an organic material mainly composed by lignin, carbohydrate fragments and some extractives) and its acid derivative (H-lignimerin), recovered from Kraft cellulose mill wastewater was examined. A Box–Behnken experiment design, used to optimize lignimerin recovery process, revealed that the type of solvent used for precipitation is a determining factor in the amount of substance obtained. Conversely, batch adsorption studies at pH 4.0 revealed that the maximum adsorption capacities, modeled by the Langmuir equation, were 666.7 and 370.4 mmol kg−1 for Cu(II) and Zn(II), respectively in lignimerin and 232.6 and 312.5 mmol kg−1 for Cu(II) and Zn(II), respectively in H-lignimerin. The adsorption of Cu(II) and Zn(II) through deprotonated hydroxyl and carboxylic groups was the dominant mechanism that may explain the adsorption in both materials. The adsorption capacities indicated that lignimerin, with a molecular mass between 50 and 70 kDa, has a potential use as an organic sorbent for removing copper and zinc from liquid resources.  相似文献   

5.
Cellulose was first modified with thionyl chloride, giving 99% substitution at C6, and then reacted with ethylene-1,2-diamine to produce 6-(2'-aminoethylamino)-6-deoxy-cellulose. From the 8.5% of nitrogen incorporated in the polysaccharide backbone, the amount of ethylene-1,2-diamine anchored per gram of modified cellulose was determined to be 3.03+/-0.01mmol. This chemically immobilized surface was characterized by FTIR, TG, (13)C NMR, and SEM techniques. The available basic nitrogen centers covalently bonded to the biopolymer skeleton were studied for copper, cobalt, nickel, and zinc adsorption from aqueous solutions and the respective thermal adsorption effects were determined by calorimetric titration. The ability to adsorb cations gave a capacity order of Co(2+)>Cu(2+)>Zn(2+)>Ni(2+) with affinities of 1.91+/-0.07, 1.32+/-0.07, 1.31+/-0.02, and 1.08+/-0.04mmol/g, respectively. The net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation and the enthalpy of the interaction was calculated to give the following exothermic values: -20.8+/-0.05, -11.72+/-0.03, -7.32+/-0.01, and -6.27+/-0.02kJ/mol for Co(2+), Cu(2+), Zn(2+), and Ni(2+), respectively. With the exception of the entropic value for copper, the other thermodynamic data for these systems are favorable for cation adsorption from aqueous solutions at the solid/liquid interface, suggesting the use of this anchored biopolymer for cation removal from the environment.  相似文献   

6.
Metal-chelating ligand and/or comonomer 2-methacrylolyamidohistidine (MAH) was synthesized by using methacryloyl chloride and L-histidine methyl ester. MAH was characterized by NMR and FTIR. Spherical beads with an average diameter of 75-125 microm were produced by suspension polymerization of methylmethacrylate (MMA) and MAH carried out in an aqueous dispersion medium. Poly(MMA-MAH) beads had a specific surface area of 37.5 m(2)/g. Poly(MMA-MAH) beads were characterized by water uptake studies, FTIR, SEM and elemental analysis. Elemental analysis of MAH for nitrogen was estimated as 34.7 microM/g of polymer. Then, Cu(2+) ions were chelated on the beads. Cu(2+)-chelated beads with a swelling ratio of 38% were used in the adsorption of human-immunoglobulin G (HIgG) from both aqueous solutions and human plasma. The maximum adsorption capacities of the Cu(2+)-chelated beads were found to be 12.2 mg/g at pH 6.5 in phosphate buffer and 15.7 mg/g at pH 7.0 in MOPS. Higher adsorption value was obtained from human plasma (up to 54.3 mg/g) with a purity of 90.7%. The metal-chelate affinity beads allowed one-step separation of HIgG from human plasma. The adsorption-desorption cycle was repeated 10 times using the same beads without noticeable loss in their HIgG adsorption capacity.  相似文献   

7.
Biosorption of copper, lead and nickel onto immobilized Bacillus coagulans (IBC) from aqueous solution in single- and multi-metal systems was investigated. The results of scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDXA) and Fourier transform infrared (FTIR) spectrometry demonstrated the importance of surface morphology and identified the active groups involved in adsorption. In batch studies, the most significant factors were screened by Minimum Run Res V Design. The Simplex Lattice Mixture Design was then successfully applied to explore the maximum adsorption capacity of the three metals (75.3 mg/g for copper, 118.3 mg/g for lead and 68.4 mg/g for nickel) and the preferential adsorption of IBC followed the order: Pb (II)?>?Cu (II)?>?Ni (II). Furthermore, adsorption kinetics and adsorption isotherms of single-, binary-, and ternary-metal systems were studied and the experimental data was found to fit well to the Freundlich isotherm and pseudo-second-order kinetics.  相似文献   

8.
This work describes the preparation of new chelating materials derived from cellulose and sugarcane bagasse for adsorption of Cu2+, Cd2+, and Pb2+ ions from aqueous solutions. The first part involved the mercerization treatment of cellulose and sugarcane bagasse with NaOH 5 mol/L. Non- and mercerized cellulose and sugarcane bagasse were then reacted with ethylenediaminetetraacetic dianhydride (EDTAD) in order to prepare different chelating materials. These materials were characterized by mass percent gain, X-ray diffraction, FTIR, and elemental analysis. The second part consisted of evaluating the adsorption capacity of these modified materials for Cu2+, Cd2+, and Pb2+ ions from aqueous single metal solutions, whose concentration was determined by atomic absorption spectroscopy. These materials showed maximum adsorption capacities for Cu2+, Cd2+, and Pb2+ ions ranging from 38.8 to 92.6 mg/g, 87.7 to 149.0 mg/g, and 192.0 to 333.0 mg/g, respectively. The modified mercerized materials showed larger maximum adsorption capacities than modified non-mercerized materials.  相似文献   

9.
A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin.  相似文献   

10.
In a previous work, chemically modified cellulose (EMC) and sugarcane bagasse (EMMB) were prepared from mercerized cellulose (MC) and twice-mercerized sugarcane bagasse (MMB) using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent. In this work we described in detail the modification of these materials in function of reaction time and EDTAD amount in the reaction media. The resistance of ester bond at pH 1, 2, 11, and 12 was also evaluated by FTIR. The results were used to model the hydrolysis process and a kinetic model was proposed. The modified materials (EMMB and EMC) were used to adsorb Ca2+ and Mg2+ ions from aqueous single solutions. The adsorption isotherms were developed at two pH values. These materials showed maximum adsorption capacities for Ca2+ and Mg2+ ions ranging from 15.6 to 54.1 mg/g and 13.5 to 42.6 mg/g, respectively. The modified material from sugarcane bagasse (EMMB) showed larger maximum adsorption capacities than modified material from cellulose (EMC) for both metals.  相似文献   

11.
In the presence of copper significant induction of citric acid overflow was observed, while concomitantly lower levels of total lipids were detected in the cells. Its effect was more obvious in a medium with magnesium as sole divalent metal ions, while in a medium with magnesium and manganese the addition of copper had a less pronounced effect. Since the malic enzyme was recognised as a supplier of reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate for lipid biosynthesis, its kinetic parameters with regard to different concentrations of metal ions were investigated. Some inhibition was found with Fe(2+) and Zn(2+), while Cu(2+) ions in a concentration of 0.1 mM completely abolished malic enzyme activity. The same metal ions proportionally reduced the levels of total lipids in Aspergillus niger cells. A strong competitive inhibition of the enzyme by Cu(2+) was observed. It seemed that copper competes with Mg(2+) and Mn(2+) for the same binding site on the protein.  相似文献   

12.
The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism‐related gene expression and the suggested regulatory metabolites. At high tissue Cu levels, there was no relation between sulphur metabolite levels viz. total sulphur, sulphate and water‐soluble non‐protein thiols, and the expression and activity of sulphate transporters and expression of APS reductase under sulphate‐sufficient or‐deprived conditions, in the presence or absence of H2S. This indicated that the regulatory signal transduction pathway of sulphate transporters was overruled or by‐passed upon exposure to elevated Cu concentrations.  相似文献   

13.
* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.  相似文献   

14.
? The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. ? Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n?=?21) and concentrations of eleven mineral elements were determined in dried shoot material. ? Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species?×?treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca?>?Mg?>?Ni?>?S?>?Na?>?Zn?>?K?>?Cu?>?Fe?>?Mn?>?P. ? Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.  相似文献   

15.
选取林业入侵植物假苍耳(Iva xanthifolia)叶片匀浆体(LSI)和茎匀浆体(SSI)作为生物吸附材料, 考察了溶液pH值、吸附时间、Cu 2+浓度对吸附性能的影响, 确定了最佳吸附pH值为6.0-7.0, 吸附平衡时间为30分钟, 处理水体中的Cu 2+浓度应不超过800 mg.L-1。采用Langmuir和Freundlich等温吸附模型进行线性拟合, 推算出LSI和SSI的饱和吸附率分别为28.68 mg.g-1和13.06 mg.g-1。通过对吸附Cu2+前后的LSI和SSI进行傅立叶红外光谱和X射线衍射分析可知, 假苍耳参与Cu2+吸附的主要物质是纤维素类和糖类, 并且可能是由它们具有的-OH、-CONH2及-C=O等官能团提供结合位点。研究结果显示假苍耳有可能成为一种具有开发潜力的新型重金属生物吸附材料。  相似文献   

16.
Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. In this paper, lead, zinc, and copper adsorption properties of Ceratophyllum demersum (Coontail or hornwort) were investigated and results were compared with other aquatic submerged plants. Data obtained from the initial adsorption studies indicated that C. demersum was capable of removing lead, zinc, and copper from solution. The metal biosorption was fast and equilibrium was attained within 20 min. Data obtained from further batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q(max)) onto C. demersum were 6.17 mg/g for Cu(II), 13.98 mg/g for Zn(II) and 44.8 mg/g for Pb(II). Kinetics of adsorption of zinc, lead and copper were analysed and rate constants were derived for each metal. It was found that the overall adsorption process was best described by pseudo second-order kinetics. The results showed that this submerged aquatic plant C. demersum can be successfully used for heavy metal removal under dilute metal concentration.  相似文献   

17.
Fourier Transform InfraRed (FTIR) spectroscopy is a powerful and rapid technique for analyzing cell wall components and putative cross-links, which is able to non-destructively recognize polymers and functional groups and provide abundant information about their in muro organization. FTIR spectroscopy has been reported to be a useful tool for monitoring cell wall changes occurring in muro as a result of various factors, such as growth and development processes, mutations or biotic and abiotic stresses. This mini-review examines the use of FTIR spectroscopy in conjunction with multivariate analyses to monitor cell wall changes related to (1) the exposure of diverse plant materials to cellulose biosynthesis inhibitors (CBIs) and (2) the habituation/dehabituation of plant cell cultures to this kind of herbicides. The spectra analyses show differences not only regarding the inhibitor, but also regarding how long cells have been growing in its presence.Key words: FTIR, cellulose biosynthesis inhibitor, habituation/dehabituation  相似文献   

18.
Poly-gamma-glutamic acid (gamma-PGA) obtained from Bacillus licheniformis ATCC 9945 was evaluated as a potential biosorbent material for use in the removal of heavy metals from aqueous solution. Copper (Cu(2+)) was chosen as the model heavy metal used in these studies since it is extensively used by electroplating and other industries, has been the model for many other similar studies, and can be easily assayed through a number of convenient methods. Cu(2+)-gamma-PGA binding parameters under varying conditions of pH, temperature, ionic strength, and in the presence of other heavy metal ions were determined for the purified biopolymer using a specially designed dialysis apparatus. Applying the Langmuir adsorption isotherm model showed that gamma-PGA had a copper capacity approaching 77.9 mg/g and a binding constant of 32 mg/L (0.5 mM) at pH 4.0 and 25 degrees C. Cu(2+)-gamma-PGA adsorption was relatively temperature independent between 7 and 40 degrees C, while an increase in ionic strength led to a decrease in metal ion binding. Cd(2+) and Zn(2+) ions compete with Cu(2+) for binding sites on the gamma-PGA biopolymer. Metal uptake by gamma-PGA was further tested using a tangential flow filtration apparatus in a diafiltration mode in which metal was continually processed through a dilute solution of gamma-PGA without allowing for equilibrium to be established. The circulating polymer solution was able to complex metal as well as successfully prevent passage of unbound copper ions present in solution through the membrane. Using 500 mL of a 0.2% gamma-PGA solution, up to 97% of a 50 mg/L copper sulfate solution processed at a flow rate of 115 mL/min was retained by the polymer. For a 10 mg/L solution of Cu(2+) as copper sulfate, filtrate concentrations of Cu(2+) never rose above 0.6 mg/L while processing 2.5 L of dilute copper sulfate.  相似文献   

19.
A comparison of electron spin-echo envelope modulation (ESEEM) spectra from multi-crystalline Cu(2+)-insulin with and without additional Cd(2+) show a dramatic change in the quadrupole coupling parameters of the remote nitrogens of the two histidine imidazoles that ligate to copper. Without Cd(2+), the quadrupole parameters are like those observed in blue copper proteins and in copper substituted lactoferrin. With Cd(2+) soaked into the Cu(2+)-insulin crystals, the quadrupole parameters are similar to those found in galactose oxidase. Theoretical simulations of ESEEM spectra guided by structure modeling suggest that these changes originate from differences in the hydrogen bonding environments of the imidazole remote nitrogen. In addition, a compilation of results from previous ESEEM studies of copper proteins reveals that the asymmetry parameter, eta, may be an indicator of type of hydrogen bond the imidazole remote nitrogen makes. When eta > or = 0.9, the nitrogen hydrogen bonds to water, whereas when eta < 0.9, the nitrogen hydrogen bonds to the protein.  相似文献   

20.
The prion protein (PrP) binds Cu(2+) in its N-terminal octarepeat domain, composed of four or more tandem PHGGGWGQ segments. Previous work from our laboratory demonstrates that copper interacts with the octarepeat domain through three distinct coordination modes at pH 7.4, depending upon the precise ratio of Cu(2+) to protein. Here, we apply both electron paramagnetic resonance (EPR) and fluorescence quenching to determine the copper affinity for each of these modes. At low copper occupancy, which favors multiple His coordination, the octarepeat domain binds Cu(2+) with a dissociation constant of 0.10 (+/-0.08) nM. In contrast, high copper occupancy, involving coordination through deprotonated amide nitrogens, exhibits a weaker affinity characterized by dissociation constants in the range of 7.0-12.0 microM. Decomposition of the EPR spectra reveals the proportions of all coordination species throughout the copper concentration range and identifies significant populations of intermediates, consistent with negative cooperativity. At most copper concentrations, the Hill coefficient is less than 1.0 and approximately 0.7 at half copper occupancy. These findings demonstrate that the octarepeat domain is responsive to a remarkably wide copper concentration range covering approximately 5 orders of magnitude. Consideration of these findings, along with the demonstrated ability of the protein to quench copper redox activity at high occupancy, suggests that PrP may function to protect cells by scavenging excess copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号