首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The acute effect of stress on the plasma and cerebrospinal fluid (CSF) immunoreactive parathyroid hormone (PTH) response was studied in 6 merino sheep. Stress was exerted by weak periodical electric square waves (PESW). In addition, the effect of intravenous injection of adrenaline was studied. Under stress conditions (PESW or adrenaline injection), plasma PTH increased up to 30% and up to 50%, respectively. Weak periodical electric square waves of 3-4 mA decreased CSF PTH concentrations by up to 50%. The effect of adrenaline injection on the CSF PTH was not significant. Total calcium and magnesium in plasma and CSF did not change. Our results showed that the effect of stress on the CSF PTH is opposite to the effect on plasma PTH, and suggest that both, PESW and adrenaline, affected PTH in plasma and CSF by a Ca-independent mechanism.  相似文献   

2.
Chemotactic factors stimulate the rate of locomotion of polymorphonuclear leukocytes (PMNs). To investigate the importance of cytoplasmic calcium we have examined the ability of the chemotactic peptide N-formylnorleucyl eucylphenalanine (FNLLP) to stimulate the locomotion of PMNs whose cytoplasmic calcium levels were reduced by incubation in EGTA or in EGTA plus the calcium ionophores, ionomycin or A23187. Locomotion was assayed by migration through micropore filters and by time-lapse videomicroscopy. Cells in EGTA exhibited similar or slightly reduced rates of locomotion compared to cells in Hanks' balanced salt solution (HBSS). The peptide dose dependence for the stimulation of locomotion was similar in medium containing calcium or EGTA. The presence of 1 microM ionophore plus EGTA had no effect on the stimulation of locomotion by peptide. The presence of ionophores (1 microM) plus external calcium inhibited locomotion.  相似文献   

3.
Many studies aimed at understanding calcium homeostasis in the cow use sheep or goats as ruminant models. However, the comparability of relevant homeostatic processes between ruminant species has not been assessed. Therefore, we investigated whether the mechanisms of maintaining calcium homeostasis are similar in different ruminant species. Dietary calcium of goats was restricted along with treatment with calcitriol in a similar protocol to that in a recent study with sheep. Plasma calcium and phosphate and parameters of bone metabolism were analysed. Gastrointestinal calcium transport was characterised in vitro in Ussing chambers. The expression of apical epithelial calcium channels, calbindin-D(9K), and the basolateral plasma membrane Ca(2+)-ATPase was determined by quantitative RT-PCR and Western blot analysis. In contrast to sheep, the goats were able to compensate for low dietary calcium supply by increasing active calcium absorption in the small intestine, especially in the jejunum. As in sheep, the observed ruminal calcium transport of goats was affected neither by the calcium restricted diet nor by the calcitriol treatment, thus indicating the presence of an alternative, vitamin D-independent mechanism of calcium transport in the forestomachs. These results demonstrate that mechanisms for maintaining calcium homeostasis differ significantly between ruminant species.  相似文献   

4.
Cytosolic Ca(2+) signaling dynamics are important to pulmonary arterial reactivity, and alterations are implicated in pulmonary vascular disorders. Yet, adaptations in cellular Ca(2+) homeostasis and receptor-mediated Ca(2+) signaling with maturation from fetal to adult life in pulmonary arterial smooth muscle cells (PASMCs) are not known. The present study tested the hypothesis that cytosolic Ca(2+) homeostasis and receptor-generated Ca(2+) signaling adapt with maturation in sheep PASMCs. Digitalized fluorescence microscopy was performed using isolated PASMCs from fetal and adult sheep that were loaded with the Ca(2+) indicator fura 2. The results show that basal cytosolic and sarcoplasmic reticulum Ca(2+) levels are attained before birth. Similarly, Ca(2+) efflux pathways from the cytosol and basal as well as capacitative Ca(2+) entry (CCE) are also developed before birth. However, receptor-mediated Ca(2+) signaling adapts with maturation. Prominently, serotonin stimulation elicited Ca(2+) elevations in very few fetal compared with adult PASMCs; in contrast, phenylephrine elevated Ca(2+) in a similar percentage of fetal and adult PASMCs. Serotonin and phenylephrine elicited Ca(2+) increases of a similar magnitude in reactive cells of fetus and adult, supporting the assertion that inositol trisphosphate signaling is intact. Caffeine and ATP elevated Ca(2+) in equivalent numbers of fetal and adult PASMCs. However, the caffeine-induced cytosolic Ca(2+) increase was significantly greater in fetal PASMCs, whereas the ATP-elicited increase was greater in adult cells. Overall, the results of this study demonstrate selective adaptations in receptor-mediated Ca(2+) signaling, but not in cellular Ca(2+) homeostasis.  相似文献   

5.
Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT hypothetically owing to their ability to buffer intracellular Ca(2+) overload. The present study was aimed at determining whether intracellular Ca(2+) homeostasis dysregulation is involved in the TMT-induced neurodegeneration and if intracellular Ca(2+)-buffering mechanisms may exert a protective action in this experimental model of neurodegeneration. In cultured rat hippocampal neurons, TMT produced time- and concentration-dependent [Ca(2+)](i) increases that were primarily due to Ca(2+) release from intracellular stores although Ca(2+) entry through Ca(v)1 channels also contributed to [Ca(2+)](i) increases in the early phase of TMT action. Cell pre-treatment with the Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (2 muM) significantly reduced the TMT-induced neuronal death. Moreover, CR(+) neurons responded to TMT with smaller [Ca(2+)](i) increases. Collectively, these data suggest that the neurotoxic action of TMT is mediated by Ca(2+) homeostasis dysregulation, and the resistance of hippocampal neurons to TMT (including CR(+) neurons) is not homogeneous among different neuron populations and is related to their ability to buffer intracellular Ca(2+) overload.  相似文献   

6.
The effects of NH4Cl on cytoplasmic free calcium concentration ([Ca2+]i) and pH (pHi) in single bovine anterior pituitary cells were determined using fluorescence imaging microscopy. Addition of NH4Cl (10-40 mM) in the presence of 1 mM extracellular calcium ([Ca2+]e) increased [Ca2+]i to a peak which then fell to a sustained plateau, returning to resting levels upon removal of NH4Cl. In medium containing 0.1 microM [Ca2+]e, or in 1 mM [Ca2+]e medium containing 0.1 microM nitrendipine, the plateau was absent leaving only a transient [Ca2+]i spike. NH4Cl also increased pHi and this, like the [Ca2+]i plateau, remained elevated during the continued presence of NH4Cl. In medium containing only 0.1 microM [Ca2+]e, to preclude refilling of internal stores by entry of external calcium, repeated exposures to NH4Cl induced repeated [Ca2+]i transients. In contrast, only the initial exposure to thyrotropin releasing hormone (TRH; 20-500 nM) caused a [Ca2+]i rise but, after an additional exposure to NH4CI, TRH responses re-emerged in some cells. Pre-treatment with the calcium ionophore ionomycin abolished the rise caused by TRH, but neither TRH nor ionomycin pretreatment affected the response to NH4Cl. Neither acetate removal nor methylamine increased [Ca2+]i in medium containing 0.1 microM [Ca2+]e, although in both cases pHi increased. We conclude that in bovine anterior pituitary cells NH4Cl raises [Ca2+]i by two independent pathways, increasing net calcium entry and mobilizing Ca2+ from a TRH-insensitive calcium store.  相似文献   

7.
The absorption and secretion of Ca and PO4 were measured with the use of radioactive isotopes in 4 adult sheep before and after parathyroidectomy. Secretion of Ca and PO4 into the stomach and intestines was measured separately. Parathyroidectomy resulted in a negative balance for Ca and PO4 and an accompanying fall in plasma Ca and PO4 concentrations. In the case of PO4 this response was attributed primarily to a reduced intestinal absorption, but for Ca increases in urinary excretion and intestinal secretion also contributed significantly. Secretion of PO4 to the stomach was reduced but endogenous PO4 excretion in the faeces was unchanged which indicated a reduced reabsorption of secreted PO4 by the intestines.  相似文献   

8.
Menadione (MEN) inhibits intestinal calcium absorption by a mechanism not completely understood. The aim of this work was to find out the role of mitochondria in this inhibitory mechanism. Hence, normal chicks treated with one i.p. dose of MEN were studied in comparison with controls. Intestinal calcium absorption was measured by the in situ ligated intestinal segment technique. GSH, oxidoreductase activities from the Krebs cycle and enzymes of the antioxidant system were measured in isolated mitochondria. Mitochondrial membrane potential was measured by a flow cytometer technique. DNA fragmentation and cytochrome c localization were determined by immunocytochemistry. Data indicate that in 30 min, MEN decreases intestinal Ca(2+) absorption, which returns to the control values after 10 h. GSH was only decreased for half an hour, while the activity of malate dehydrogenase and alpha-ketoglutarate dehydrogenase was diminished for 48 h. Mn(2+)-superoxide dismutase activity was increased in 30 min, whereas the activity of catalase and glutathione peroxidase remained unaltered. DNA fragmentation and cytochrome c release were maximal in 30 min, but were recovered after 15 h. In conclusion, MEN inhibits intestinal Ca(2+) absorption by mitochondrial dysfunction as revealed by GSH depletion and alteration of the permeability triggering the release of cytochrome c and DNA fragmentation.  相似文献   

9.
10.
The in vitro effects of ethanol on intracellular Ca(2+) homeostasis and tyrosine phosphorylation have been investigated in human platelets in order to clarify the cellular mechanisms underlying its described anti-aggregant effects. Ethanol (1-50 mM) reduced, in a dose-dependent manner, the rate and amplitude of aggregation and attenuated the phosphotyrosine content both induced by 0.1U/ml of the physiological ligand, thrombin. Thrombin-induced Ca(2+) entry to the cytosol was significantly reduced, and capacitative Ca(2+) entry (CCE) significantly altered, by 50 mM ethanol, so that ethanol reduces CCE mediated by depletion of the 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive store but enhances CCE induced by the TBHQ-insensitive pool. In conclusion, we provide considerable evidence that ethanol reduces thrombin-induced aggregation, which is likely a result of a significant inhibition of Ca(2+) entry, as well as a reduction in the activity of protein tyrosine kinases.  相似文献   

11.
12.
Two immortalized cell lines, sup (+)and sup (), derived from mutagenized Syrian hamster embryo cells,were used to study the relationship and temporal order between calciumand ceramide signals during apoptosis. The early preneoplastic cells,termed sup (+), suppress tumorigenicity when hybridized with tumorcells, whereas later-stage sup () cells do not. In reduced serumconditions, sup (+) cells cease proliferating and undergo apoptosis; incontrast, sup () cells continue slow growth and undergo necrosis. Insup (+) cells, decreased endoplasmic reticulum (ER) calcium occurs 4 h after low serum treatment and precedes apoptosis. Significant elevations in ceramide are observed 16 h after reduced serumtreatment of sup (+) cells but are not found in sup () cells.Inhibiting ER calcium depletion in low serum-treated sup (+) cells bytreating with high levels of calcium prevents both ceramide generation and apoptosis. Conversely, inducing ER calcium depletion in sup ()cells by treating with low serum plus thapsigargin results in elevatedceramide levels and apoptosis. Furthermore, C6-ceramide treatment induced apoptosis of sup () cells in low serum, a condition that does not normally cause apoptosis. C6-ceramidetreatment did not induce apoptosis in either sup (+) or sup () cellsin 10% serum but did cause G2/M arrest. These studies showthat ceramide production is downstream of ER calcium release.

  相似文献   

13.
Sheep have a varying ability to resist infection with gastrointestinal nematodes. This ability is due in part to genetic differences that exist between individuals. In order to define these differences we have used real-time PCR to quantify gene expression responses in the gut mucosal surface of genetically resistant and susceptible sheep, following a nematode challenge. Expression profiles were determined in response to two different nematode species, Haemonchus contortus and Trichostrongylus colubriformis, and in divergent sheep originating from two different genetic backgrounds. Results show that the response generated differs between resistant and susceptible animals and is further impacted by the origin of the sheep and nematode species used for challenge. However, some conserved features of a response mounted by a resistant or a susceptible animal were identified. Genes found to be more abundantly expressed in resistant animals include markers of an early inflammatory response, several Toll-like receptors (TLR2, 4, 9) and free radical producing genes (DUOX1 and NOS2A). Conversely, genes differentiating susceptible animals indicate a prolonged response and development of a chronic inflammatory state, characterised by elevated expression of members of the NF-kappabeta signalling pathway (IKBKB and NFKBIA) together with delayed expression of regulatory markers such as IL2RA (CD25), IL10 and TGFbeta2. While multiple nematode response pathways were identified, the identification of conserved aspects of the response which associate with resistance provides evidence that alternative nematode control strategies, such as breeding for resistant animals, may be feasible.  相似文献   

14.
The antiarrhythmic drug amiodarone was recently demonstrated to have novel broad range fungicidal activity. We provide evidence that amiodarone toxicity is mediated by disruption of Ca2+ homeostasis in Saccharomyces cerevisiae. In mutants lacking calcineurin and various Ca2+ transporters, including pumps (Pmr1 and Pmc1), channels (Cch1/Mid1 and Yvc1), and exchangers (Vcx1), amiodarone sensitivity correlates with cytoplasmic calcium overload. Measurements of cytosolic Ca2+ by aequorin luminescence demonstrate a biphasic response to amiodarone. An immediate and extensive calcium influx was observed that was dose-dependent and correlated with drug sensitivity. The second phase consisted of a sustained release of calcium from the vacuole via the calcium channel Yvc1 and was independent of extracellular Ca2+ entry. To uncover additional cellular pathways involved in amiodarone sensitivity, we conducted a genome-wide screen of nearly 5000 single-gene yeast deletion mutants. 36 yeast strains with amiodarone hypersensitivity were identified, including mutants in transporters (pmr1, pdr5, and vacuolar H+-ATPase), ergosterol biosynthesis (erg3, erg6, and erg24), intracellular trafficking (vps45 and rcy1), and signaling (ypk1 and ptc1). Of three mutants examined (vps45, vma3, and rcy1), all were found to have defective calcium homeostasis, supporting a correlation with amiodarone hypersensitivity. We show that low doses of amiodarone and an azole (miconazole, fluconazole) are strongly synergistic and exhibit potent fungicidal effects in combination. Our findings point to the potentially effective application of amiodarone as a novel antimycotic, particularly in combination with conventional antifungals.  相似文献   

15.
Tetanus toxin (TT) inhibits secretion of neurotransmitters from neurons and lysozyme from human macrophages (Mphi). Because these secretory events are associated with changes in cytosolic free calcium [Ca2+]i, we examined the effect of TT on Mphi calcium homeostasis and secretion in response to ionomycin and phorbol myristate acetate (PMA). Using Quin 2 to report [Ca2+]i, basal [Ca2]i was similar for control cells (133 nM) and Mphi treated with TT (127 nM). In response to ionomycin (50 nM) [Ca2+]i increased to 548 +/- 74 nM in control cells and to 357 +/- 36 nM in TT-treated Mphi (p less than 0.02, N = 12). Despite this rise in [Ca2+]i, neither control Mphi nor TT-treated Mphis secreted the lysosomal enzyme lysozyme in response to this concentration of ionomycin (50 nM). In both control and TT-treated Mphi, stimulation with a higher concentration of ionomycin (1000 nM) caused saturation of the quin 2 fluorescence signal. However, lysozyme secretion from TT-Mphi was inhibited. In response to the phorbol ester, PMA (3 uM), [Ca2+]i did not increase in either control Mphi or TT-treated Mphi. However, secretion of lysozyme from TT-treated Mphi was also inhibited in response to this stimulus (70.8% of control, p less than 0.02, N = 3). These data indicate that the ability of TT to inhibit secretion from Mphi is not directly linked to alterations of cytosolic calcium homeostasis.  相似文献   

16.
Curcumin, a polyphenol compound, has been recognized as a promising anti-cancer drug. The purpose of the present study was to investigate the cytotoxicity of curcumin to Leishmania donovani, the causative agent for visceral leishmaniasis. Flow cytometric analysis revealed that curcumin induced cell cycle arrest at G2/M phase. Incubation of Leishmania promastigotes with curcumin caused exposure of phosphatidylserine to the outer leaflet of plasma membrane. This event is preceded by curcumin-induced formation of reactive oxygen species (ROS) and elevation of cytosolic calcium through the release of calcium ions from intracellular stores as well as by influx of extracellular calcium. Elevation of cytosolic calcium is responsible for depolarization of mitochondrial membrane potential (ΔΨm), release of Cytochrome c into the cytosol and concomitant nuclear alterations that included deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) and DNA fragmentation. Taken together, these data indicate that curcumin has promising antileishmanial activity that is mediated by programmed cell death and, accordingly, merits further investigation as a therapeutic option for the treatment of leishmaniasis.  相似文献   

17.
A large variety of cation transport systems are involved in the regulation of calcium homeostasis in endothelial cells. The focus of the present study is to determine the contribution of nonselective cation channels from the TRP (transient receptor potential) family to cellular calcium homeostasis of porcine aortic endothelial cells (PAEC). One member of the TRPV (vanniloid) subfamily, TRPV4, has previously been shown to be involved in cation transport induced by a large variety of stimulations including osmolarity, temperature, mechanical stress, and phosphorylation. Here, we demonstrate the existence of several TRP proteins, including TRPV4, in PAEC using RT-PCR. To test whether this channel is functional, we performed FURA-2 calcium measurements and whole-cell patch-clamp experiments. We observed the induction of large calcium signals following mechanical stress, altered extracellular temperature, and the selective TRPV4 activator 4-alpha -PDD. These effects were diminished in the presence of the TRPV4 inhibitor miconazole, suggesting the involvement of this channel in mediating endothelial calcium signals. The large amounts of transported calcium and the short signaling ways suggest a potentially important role of this channel in many physiological processes.  相似文献   

18.
19.
20.
Central to controlling intracellular calcium concentration ([Ca(2+)](i)) are a number of Ca(2+) transporters and channels with the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) being of particular note in the heart. This review concentrates on the regulation of [Ca(2+)](i) in cardiac muscle and the homeostatic mechanisms employed to ensure that the heart can operate under steady-state conditions on a beat by beat basis. To this end we discuss the relative importance of various sources and sinks of Ca(2+) responsible for initiating contraction and relaxation in cardiac myocytes and how these can be manipulated to regulate the Ca(2+) content of the major Ca(2+) store, the sarcoplasmic reticulum (SR). We will present a simple feedback system detailing how such control can be achieved and highlight how small perturbations to the steady-state operation of the feedback loop can be both beneficial physiologically and underlie changes in systolic Ca(2+) in ageing and heart disease. In addition to manipulating the amplitude of the normal systolic Ca(2+) transient, the tight regulation of SR Ca(2+) content is also required to prevent the abnormal, spontaneous or diastolic release of Ca(2+) from the SR. Such diastolic events are a major factor contributing to the genesis of cardiac arrhythmias in disease situations and in recently identified familial mutations in the SR Ca(2+) release channel (ryanodine receptor, RyR). How such diastolic release arises and potential mechanisms for controlling this will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号