共查询到20条相似文献,搜索用时 0 毫秒
1.
Okamoto K Kitabayashi I Taya Y 《Biochemical and biophysical research communications》2006,351(1):216-222
KAP1 recruits many proteins involved in gene silencing and functions as an integral part of co-repressor complex. KAP1 was identified as Mdm2-binding protein and shown to form a complex with Mdm2 and p53 in vivo. We examined the role of KAP1 in p53 activation after the treatment of cells with different types of external stresses. KAP1 reduction markedly enhanced the induction of p21, a product of the p53 target gene, after treatment with actinomycin D or gamma-irradiation, but not with camptothecin. Treatment with actinomycin D, but not with camptothecin, augmented the interaction of p53 with Mdm2 and KAP1. Further, KAP1 reduction in actinomycin D-treated cells facilitated cell cycle arrest and negatively affected clonal cell growth. Thus, the reduction of KAP1 levels promotes p53-dependent p21 induction and inhibits cell proliferation in actinomycin D-treated cells. KAP1 may serve as a therapeutic target against cancer in combination with actinomycin D. 相似文献
2.
Identification of S6K2 as a centrosome-located kinase 总被引:1,自引:0,他引:1
Ribosomal S6 kinase 2 (S6K2) acts downstream of the mammalian target of rapamycin (mTOR). Here, we show that some S6K2 localize at the centrosome throughout the cell cycle. S6K2 is found in the pericentriolar area of the centrosome. S6K2 centrosomal localization is unaffected by serum withdrawal or treatment with rapamycin, wortmannin, U0126, or phorbol-12-myristate-13-acetate (PMA). Unlike S6K2, S6 kinase 1 (S6K1) does not localize at the centrosome, suggesting the two kinases may also have nonoverlapping functions. Our data suggest that centrosomal S6K2 may have a role in the phosphoinositide-3-kinase (PI3K)/Akt/mTOR signaling pathway that has also been detected in the centrosome. 相似文献
3.
The p53 pathway is pivotal in tumor suppression. Cellular p53 activity is subject to tight regulation, in which the two related proteins Mdm2 and Mdm4 have major roles. The delicate interplay between the levels of Mdm2, Mdm4 and p53 is crucial for maintaining proper cellular homeostasis. microRNAs (miRNAs) are short non-coding RNAs that downregulate the level and translatability of specific target mRNAs. We report that miR-661, a primate-specific miRNA, can target both Mdm2 and Mdm4 mRNA in a cell type-dependent manner. miR-661 interacts with Mdm2 and Mdm4 RNA within living cells. The inhibitory effect of miR-661 is more prevalent on Mdm2 than on Mdm4. Interestingly, the predicted miR-661 targets in both mRNAs reside mainly within Alu elements, suggesting a primate-specific mechanism for regulatory diversification during evolution. Downregulation of Mdm2 and Mdm4 by miR-661 augments p53 activity and inhibits cell cycle progression in p53-proficient cells. Correspondingly, low miR-661 expression correlates with bad outcome in breast cancers that typically express wild-type p53. In contrast, the miR-661 locus tends to be amplified in tumors harboring p53 mutations, and miR-661 promotes migration of cells derived from such tumors. Thus, miR-661 may either suppress or promote cancer aggressiveness, depending on p53 status. 相似文献
4.
Yogosawa S Miyauchi Y Honda R Tanaka H Yasuda H 《Biochemical and biophysical research communications》2003,302(4):869-872
Drosophila Numb protein functions as an antagonist against Notch signal. The expression of this protein is asymmetrical in divided cells and thought to be involved in the neural cell differentiation and/or cell fate. Human homologue of Numb (hNumb) was cloned as Mdm2-binding protein by yeast two-hybrid screening. Since Mdm2 is an oncoprotein and has ubiquitin ligase activity toward tumor suppressor p53, we assessed to find out whether Mdm2 ubiquitinylates the hNumb protein. The recombinant hNumb expressed in Sf-9 cells using baculovirus protein expression system bound to Mdm2 in vitro. When hNumb was subjected to in vitro ubiquitinylation assay system, which contains E1, E2, or UbcH5c, and Mdm2, hNumb was ubiquitinylated as efficiently as the p53 protein. However, when the Ring-finger domain mutant of Mdm2 was used in place of wild-type Mdm2, hNumb was not ubiquitinylated. Furthermore, when U2OS cells were co-transfected with hNumb and Mdm2, the hNumb protein was ubiquitinylated and degraded. These data strongly suggest that Mdm2 functions as the ubiquitin ligase toward hNumb and that it induces its degradation in intact cells. 相似文献
5.
The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibile to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in the maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cretg/+ mediated inactivation of Mdm2 in the NPC (NPCMdm2−/−) results in perinatal lethality. NPCMdm2−/− neonates have hypo-dysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPCMdm2−/− metanephroi exhibit thinning of the progenitor GFP+/Six2+ population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5–E15.5 NPCMdm2−/− kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPCMdm2−/− kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cretg/+; Mdm2f/f mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche. 相似文献
6.
Ye P Kuhn C Juan M Sharma R Connolly B Alton G Liu H Stanton R Kablaoui NM 《Bioorganic & medicinal chemistry letters》2011,21(2):849-852
S6K1 (p70 S6 kinase-1) is thought to play a critical role in the development of obesity and insulin resistance, thus making it an attractive target in developing medicines for the treatment of these disorders. We describe a novel thiophene urea class of S6K inhibitors. The lead matter for the development of these inhibitors came from mining the literature for reports of weak off-target S6K activity. These optimized inhibitors exhibit good potency and excellent selectivity for S6K over a panel of 43 kinases. 相似文献
7.
8.
Ribosomal S6 kinase 2 (S6K2) is one of the kinases regulated by the mammalian target of rapamycin (mTOR) signaling pathway.
Although it has been identified as a kinase homologous to S6K1, evidence suggests that the two kinases have non-overlapping
functions, and the biological function of S6K2 still remains unknown. In order to identify the cell cycle stage(s) during
which S6K2 plays a role, we assessed changes in the catalytic activity of S6K2 throughout the cell cycle. Our data show that
S6K2 is active throughout the cell cycle with higher activity in G2 and M phases. We also show that S6K1 activity peaks sharply
during M phase. Our data suggest that S6K1 and S6K2 likely play yet-unknown roles in G2 and M phases. 相似文献
9.
10.
Tim R. Fenton Jodie Gwalter Rainer Cramer Ivan T. Gout 《Biochemical and biophysical research communications》2010,398(3):400-21
The 70 kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling. 相似文献
11.
Peng Zhao Qiao Meng Ling-Zhi Liu Ning Liu Bing-Hua Jiang 《Biochemical and biophysical research communications》2010,395(2):219-224
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression. 相似文献
12.
《Cell cycle (Georgetown, Tex.)》2013,12(5):953-962
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent. 相似文献
13.
Xiaofeng Liu Yuqin Tan Chunfeng Zhang Ying Zhang Liangliang Zhang Pengwei Ren Hongkui Deng Jianyuan Luo Yang Ke Xiaojuan Du 《EMBO reports》2016,17(3):349-366
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. 相似文献
14.
15.
16.
17.
Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase 总被引:2,自引:0,他引:2
mdm2 and mdmx oncogenes play essential yet non-redundant roles in synergistic inactivation of the tumor suppressor, p53. While Mdm2 inhibits p53 activity mainly by augmenting its ubiquitination, the functional role of Mdmx on p53 ubiquitination remains obscure. In transfected H1299 cells, Mdmx augmented Mdm2-mediated ubiquitination of p53. In in vitro ubiquitination assays, the Mdmx/Mdm2 heteromeric complex, in comparison to the Mdm2 homomer, showed enhanced ubiquitinase activity toward p53 and the reduced auto-ubiquitination of Mdm2. Alteration of the substrate specificity via binding to Mdmx may contribute to efficient ubiquitination and inactivation of p53 by Mdm2.
Structured summary
MINT-7219995: P53 (uniprotkb:P04637) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096) 相似文献18.
19.
20.
《Biochemical and biophysical research communications》2020,521(4):1017-1023
Dysregulation of apoptotic and autophagic function are characterized as the main pathogeneses of diabetic nephropathy (DN). It has been reported that Karyopherin Alpha 2 (KPNA2) contributes to apoptosis and autophagy in various cells, but its role in DN development remains unknown. The purpose of present study was to explore the function and underling mechanisms of KPNA2 in development of DN. In this study, 30 mM high glucose (HG)-evoked podocytes were used as DN model. The expression of KPNA2 was detected by qRT-PCR and Western blot assays. The cell viability was tested by CCK-8 kit, the apoptosis was measured using flow cytometry assay, the apoptotic and the autophagy related genes was detected by Western blot. Our results indicated that KPNA2 was significantly increased after HG stimulation. Knockdown of KPNA2 inhibited apoptosis, and promoted cell viability and autophagy in HG-treated podocytes. In addition, silencing of KPNA2 deactivated mTORC1/p70S6K pathway activation via regulating SLC1A5. Further results demonstrated that activating mTORC1/p70S6K pathway strongly ameliorated the effect of KPNA2 on cell viability, apoptosis and autophagy. Therefore, our study suggested that knockdown of KPNA2 rescued HG-induced injury via blocking activation of mTORC1/p70S6K pathway by mediating SLC1A5. 相似文献