首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As hamster scrapie cannot infect mice, due to sequence differences in their PrP proteins, we find “species barriers” to transmission of the [URE3] prion in Saccharomyces cerevisiae among Ure2 proteins of S. cerevisiae, paradoxus, bayanus, cariocanus, and mikatae on the basis of differences among their Ure2p prion domain sequences. The rapid variation of the N-terminal Ure2p prion domains results in protection against the detrimental effects of infection by a prion, just as the PrP residue 129 Met/Val polymorphism may have arisen to protect humans from the effects of cannibalism. Just as spread of bovine spongiform encephalopathy prion variant is less impaired by species barriers than is sheep scrapie, we find that some [URE3] prion variants are infectious to another yeast species while other variants (with the identical amino acid sequence) are not. The species barrier is thus prion variant dependent as in mammals. [URE3] prion variant characteristics are maintained even on passage through the Ure2p of another species. Ure2p of Saccharomyces castelli has an N-terminal Q/N-rich “prion domain” but does not form prions (in S. cerevisiae) and is not infected with [URE3] from Ure2p of other Saccharomyces. This implies that conservation of its prion domain is not for the purpose of forming prions. Indeed the Ure2p prion domain has been shown to be important, though not essential, for the nitrogen catabolism regulatory role of the protein.  相似文献   

2.
Liao TY  Lee LY  Chen RP 《The FEBS journal》2011,278(22):4351-4361
The risk of acquiring variant Creutzfeldt-Jakob disease is closely related to polymorphism at codon 129 of the human prion gene, because almost all variant Creutzfeldt-Jakob disease patients are Met/Met homozygotes. Although animal transmission experiments corroborated this seeding discrimination, the origin of the differential seeding efficiency of the bovine prion seed for human codon 129 polymorphism remained elusive. Here, we used a short prion protein (PrP) peptide as a model system to test whether seeding discrimination can be found in this simple system. We used a previously developed 'seed-titration method' and time-resolved CD spectroscopy to compare sequence-dependent seeding efficiency regarding codon 129 polymorphism. Our results showed that the Met→Val substitution on the human PrP (huPrP) peptide decreased seeding efficiency by 10 times when fibrils formed from bovine PrP (bPrP) peptide were used as the seed. To explore whether the different seeding barrier is due to the chemical and structural properties of Met and Val or whether another residue is involved in this peptide model, we constructed three bPrP mutants, V112M, L138I and N143S, in each of which one residue was replaced by the corresponding human residue. Our data showed that Leu138 in the bPrP seed might be the key residue causing the different seeding efficiencies related to 129M/V polymorphism and the interference effect of huPrP129V in the huPrP129M/V mixture. We propose a 'surface competition hypothesis' to explain the big seeding barrier caused by 129V in the PrP peptide seeding experiment.  相似文献   

3.
Prion diseases result from the accumulation of a misfolded isoform (PrPSc) of the normal host prion protein (PrPC). PrPSc propagates by templating its conformation onto resident PrPC to generate new PrPSc. Although the nature of the PrPSc-PrPC complex is unresolved, certain segments or specific residues are thought to feature critically in its formation. The polymorphic residue 129 is one such site under considerable study. We combined transmission studies with a novel live cell yeast-based fluorescence resonance energy transfer (FRET) system that models the molecular association of PrP in a PrPSc-like state, as a way to explore the role of residue 129 in this process. We show that a reduction in efficiency of prion transmission between donor PrPSc and recipient PrPC that are mismatched at residue 129 correlates with a reduction in FRET between PrP-129M and PrP-129V in our yeast model. We further show that this effect depends on the different secondary structure propensities of Met and Val, rather than the specific amino acids. Finally, introduction of the disease-associated P101L mutation (mouse- equivalent) abolished FRET with wild-type mouse PrP, whereas mutant PrP-P101L displayed high FRET with homologous PrP-P101L, as long as residue 129 matched. These studies provide the first evidence for a physical alteration in the molecular association of PrP molecules differing in one or more residues, and they further predict that the different secondary structure propensities of Met and Val define the impaired association observed between PrPSc and PrPC mismatched at residue 129.  相似文献   

4.
The cellular isoform of the normal prion protein PrP(c), encoded by the PRNP gene, is expressed in human intestinal epithelial cells where it may represent a potential target for infectious prions. We have sequenced the PRNP gene in Caco-2 and HT-29 parental and clonal cell lines, and found that these cells have a distinct polymorphism at codon 129. HT-29 cells are homozygous Met/Met, whereas Caco-2 cells are heterozygous Met/Val. The 129Val variant was also detected in Caco-2 mRNAs. Real-time PCR quantifications revealed that PrP(c) mRNAs were more expressed in HT-29 cells than in Caco-2 cells. These data were confirmed by studying the expression of PrP(c) in plasma membranes and lipid rafts prepared from these cells. Overall, these results may be important in view of using human intestinal cell lines Caco-2 and HT-29 as cellular in vitro models to study the initial steps of prion propagation after oral inoculation.  相似文献   

5.
Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp)-->AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. We confirmed the 178Asn mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178Asn reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129Met/Val. Moreover, of five 178Asn individuals who are above age-at-onset range and who are well, two have 129Met and three have 129Met/Val, suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178Asn mutation.  相似文献   

6.
Prion diseases involve the conformational conversion of the cellular prion protein (PrPC) to its misfolded pathogenic form (PrPSc). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrPC to PrPSc.  相似文献   

7.
Prion diseases involve the conformational conversion of the cellular prion protein (PrPC) to its misfolded pathogenic form (PrPSc). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrPC to PrPSc.  相似文献   

8.
The human PrP gene (PRNP) has two common alleles that encode either methionine or valine at codon 129. This polymorphism modulates disease susceptibility and phenotype of human transmissible spongiform encyphalopathies, but the molecular mechanism by which these effects are mediated remains unclear. Here, we compared the misfolding pathway that leads to the formation of beta-sheet-rich oligomeric isoforms of the methionine 129 variant of PrP to that of the valine 129 variant. We provide evidence for differences in the folding behavior between the two variants at the early stages of oligomer formation. We show that Met(129) has a higher propensity to form beta-sheet-rich oligomers, whereas Val(129) has a higher tendency to fold into alpha-helical-rich monomers. An equimolar mixture of both variants displayed an intermidate folding behavior. We show that the oligomers of both variants are initially a mixture of alpha- and beta-rich conformers that evolve with time to an increasingly homogeneous beta-rich form. This maturation process, which involves no further change in proteinase K resistance, occurs more rapidly in the Met(129) form than the Val(129) form. Although the involvement of such beta-rich oligomers in prion pathogenesis is speculative, the misfolding behavior could, in part, explain the higher susceptibility of individuals that are methionine homozygote to both sporadic and variant Creutzfeldt-Jakob disease.  相似文献   

9.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

10.
The infectious agent of prion diseases is identified with PrP(Sc), a beta-rich, amyloidogenic and partially protease resistant isoform of the cellular glycoprotein, PrP(C). To understand the process of prion formation in vivo, we and others have studied defined misfolding pathways of recombinant PrP in vitro. The low-level infectivity of the in vitro misfolded murine PrP amyloid has recently been reported. Here we analyze the in vitro kinetics of amyloid formation from recombinant human PrP(90-231) in vitro in the context of two common allelic forms of PrP found in human populations that are associated with differences in prion disease susceptibility and pathological phenotype. We show that human PrP amyloid forms readily from its PrP(C)-like state in vitro, that the lag time of the reaction can be further shortened by the presence of a "seed" of pre-formed PrP amyloid, and that amyloid propagation is more complex than a simple crystallization process. We further show that the kinetics of amyloid formation do not differ between the Met129 and Val129 allelomorphs of human PrP, and that amyloid from each functions as an equally effective seed in heterologous, as in homologous amyloid reactions. The results could illuminate the process of amyloid formation in vivo as well as help understanding prion pathogenesis.  相似文献   

11.
Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrPSc and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of “uptake of prion from the environment—widespread in vivo prion dissemination—prion excretion—prion persistence in the environment” is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years.Key words: prion, PrP, excretion, secretion, transmission  相似文献   

12.
Prion diseases are neurodegenerative disorders caused by misfolding of the normal prion protein (PrP) into a pathogenic “scrapie” conformation. To better understand the cellular and molecular mechanisms that govern the conformational changes (conversion) of PrP, we compared the dynamics of PrP from mammals susceptible (hamster and mouse) and resistant (rabbit) to prion diseases in transgenic flies. We recently showed that hamster PrP induces spongiform degeneration and accumulates into highly aggregated, scrapie-like conformers in transgenic flies. We show now that rabbit PrP does not induce spongiform degeneration and does not convert into scrapie-like conformers. Surprisingly, mouse PrP induces weak neurodegeneration and accumulates small amounts of scrapie-like conformers. Thus, the expression of three highly conserved mammalian prion proteins in transgenic flies uncovered prominent differences in their conformational dynamics. How these properties are encoded in the amino acid sequence remains to be elucidated.  相似文献   

13.
The transmission of infectious prions into different host species requires compatible prion protein (PrP) primary structures, and even one heterologous residue at a pivotal position can block prion infection. Mapping the key amino acid positions that govern cross-species prion conversion has not yet been possible, although certain residue positions have been identified as restrictive, including residues in the β22 loop region of PrP. To further define how β22 residues impact conversion, we investigated residue substitutions in PrPC using an in vitro prion conversion assay. Within the β22 loop, a tyrosine residue at position 169 is strictly conserved among mammals, and transgenic mice expressing mouse PrP having the Y169G, S170N, and N174T substitutions resist prion infection. To better understand the structural requirements of specific residues for conversion initiated by mouse prions, we substituted a diverse array of amino acids at position 169 of PrP. We found that the substitution of glycine, leucine, or glutamine at position 169 reduced conversion by ∼75%. In contrast, replacing tyrosine 169 with either of the bulky, aromatic residues, phenylalanine or tryptophan, supported efficient prion conversion. We propose a model based on a requirement for tightly interdigitating complementary amino acid side chains within specific domains of adjacent PrP molecules, known as “steric zippers,” to explain these results. Collectively, these studies suggest that an aromatic residue at position 169 supports efficient prion conversion.  相似文献   

14.
Variant Creutzfeldt-Jakob disease (vCJD) appears to be caused by infection with the bovine spongiform encephalopathy (BSE) agent. To date, all patients with vCJD are homozygous for methionine at codon 129 of the PrP gene. To investigate the relationship between polymorphism at codon 129 and susceptibility to BSE or vCJD prions, we performed splenic follicular dendritic cell assay with humanized knock-in mice through peripheral infection. All humanized knock-in mice showed little or no susceptibility to BSE prions. Only the subset of humanized knock-in mice with codon 129 Met/Met genotype showed weak susceptibility by Western blotting. Surprisingly, we succeeded in the transmission of vCJD prions to humanized knock-in mice not only with codon 129 Met/Met but also with codon 129 Met/Val. Humanized knock-in mice with codon 129 Val/Val were not susceptible. The results suggest that human heterozygotes at codon 129 are also at risk for secondary infection with vCJD.  相似文献   

15.
Gerstmann-Str?ussler-Scheinker disease (GSS) is a cerebral amyloidosis associated with mutations in the prion protein (PrP) gene (PRNP). The aim of this study was to characterize amyloid peptides purified from brain tissue of a patient with the A117V mutation who was Met/Val heterozygous at codon 129, Val(129) being in coupling phase with mutant Val117. The major peptide extracted from amyloid fibrils was a approximately 7-kDa PrP fragment. Sequence analysis and mass spectrometry showed that this fragment had ragged N and C termini, starting mainly at Gly88 and Gly90 and ending with Arg148, Glu152, or Asn153. Only Val was present at positions 117 and 129, indicating that the amyloid protein originated from mutant PrP molecules. In addition to the approximately 7-kDa peptides, the amyloid fraction contained N- and C-terminal PrP fragments corresponding to residues 23-41, 191-205, and 217-228. Fibrillogenesis in vitro with synthetic peptides corresponding to PrP fragments extracted from brain tissue showed that peptide PrP-(85-148) readily assembled into amyloid fibrils. Peptide PrP-(191-205) also formed fibrillary structures although with different morphology, whereas peptides PrP-(23-41) and PrP-(217-228) did not. These findings suggest that the processing of mutant PrP isoforms associated with Gerstmann-Str?ussler-Scheinker disease may occur extracellularly. It is conceivable that full-length PrP and/or large PrP peptides are deposited in the extracellular compartment, partially degraded by proteases and further digested by tissue endopeptidases, originating a approximately 7-kDa protease-resistant core that is similar in patients with different mutations. Furthermore, the present data suggest that C-terminal fragments of PrP may participate in amyloid formation.  相似文献   

16.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis  相似文献   

17.
While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient''s post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.  相似文献   

18.
Prion protein (PrP) is a cell surface glycoprotein which is required for susceptibility to prion infection and disease. However, PrP is expressed in many different cell types located in numerous organs. Therefore, in addition to its role in prion diseases, PrP may have a large variety of other biological functions involving the nervous system and other systems. We recently showed that susceptibility to kainate-induced seizures differed in Prnp−/− and Prnp+/+ mice on the C57BL/10SnJ background. However, in a genetic complementation experiment a PrP expressing transgene was not able to rescue the Prnp+/+ phenotype. Thus the apparent effect of PrP on seizures was actually due to genes flanking the Prnp−/− gene rather that the Prnp deletion itself. We discuss here several pitfalls in the use of Prnp−/− genotypes expressed in various mouse genetic backgrounds to determine the functions of PrP. In particular, the use of Prnp−/− mice with heterogeneous mixed genetic backgrounds may have weakened the conclusions of many previous experiments. Use of either co-isogenic mice or congenic mice with more homogeneous genetic backgrounds is now feasible. For congenic mice, the potential problem of flanking genes can be mitigated by the use of appropriate transgene rescue experiments to confirm the conclusions.  相似文献   

19.
Cellular prion proteins, PrPC, carrying the amino acid substitutions P102L, P105L, or A117V, which confer increased susceptibility to human transmissible spongiform encephalopathies, are known to form structures that include transmembrane polypeptide segments. Herein, we investigated the interactions between dodecylphosphocholine micelles and the polypeptide fragments 90–231 of the recombinant mouse PrP variants carrying the amino acid replacements P102L, P105L, A117V, A113V/A115V/A118V, K110I/H111I, M129V, P105L/M129V, and A117V/M129V. Wild-type mPrP-(90–231) and mPrP[M129V]-(91–231) showed only weak interactions with dodecylphosphocholine micelles in aqueous solution at pH 7.0, whereas discrete interaction sites within the polypeptide segment 102–127 were identified for all other aforementioned mPrP variants by NMR chemical shift mapping. These model studies thus provide evidence that amino acid substitutions within the polypeptide segment 102–127 affect the interactions of PrPC with membranous structures, which might in turn modulate the physiological function of the protein in health and disease.Transmissible spongiform encephalopathies (TSEs),2 such as Creutzfeldt-Jakob disease and the Gerstmann-Sträussler-Scheinker syndrome in humans, are accompanied by the appearance in the brain of an aggregated “scrapie” isoform of the host-encoded prion protein, PrPSc (13). The cellular form, PrPC, consists of an unstructured N-terminal “tail” of residues 23–125 and a globular domain of residues 126–231, and is attached by a C-terminal glycosylphosphatidylinositol (GPI) anchor to the outer plasma membrane. This structure ensures a role of membrane interactions in the physiological function of PrPC and probably also in the disease-related events leading to TSEs. For example, transgenic mice expressing a prion protein variant lacking the GPI membrane anchor did not develop the typical clinical signs of TSE after inoculation with infectious brain homogenate, although significant amounts of PrPSc accumulated in the brain (4). This finding led to the conclusion that membrane-association of PrPC is necessary for the development of a TSE. Independent evidence for the importance of membrane interactions for the onset of prion diseases was derived from cell-free conversion assays and cell culture experiments (5, 6).Data have also been presented that indicate that in addition to the normal form with the C terminus linked to a GPI anchor and the C-terminal domain located on the cell surface, PrPC can adopt two different transmembrane topologies, CtmPrP and NtmPrP, which have the C-terminal polypeptide segment located in the lumen of the endoplasmic reticulum (CtmPrP) or in the cytoplasm (NtmPrP) (79). The population of the CtmPrP variant is <10% of the total wild-type prion protein present during cellular biosynthesis but is increased to 20–30% for the pathogenic mutations P102L, P105L, and A117V of human PrP and the designed variant mouse PrPs obtained with the amino acid exchanges A113V/A115V/A118V and K110I/H111I (1013). The population of CtmPrP was further increased when an additional mutation, L9R, was present in the N-terminal signal sequence (14), so that ∼50% of the PrP was synthesized as the CtmPrP variant in granule neurons obtained from transgenic mice expressing a prion protein construct carrying the four amino acid replacements L9R, A113V, A115V, and A118V (15). Quite generally, an increase in the population of CtmPrP was also shown to be associated with severe neurodegeneration in transgenic mice, and it has been suggested that CtmPrP may be the proximate cause of neuronal death in certain prion disorders (10, 11, 15).In vitro studies on interactions of full-length and N-terminally truncated forms of recombinant PrP showed that acidic membranes caused the N-terminal part of the protein to become more structured, whereas the C-terminal domain was destabilized (1619). Furthermore, zwitterionic gel-phase dipalmitoylphosphatidylcholine or raft-like membranes were shown to induce increased α-helical structure in recombinant Syrian hamster PrP-(90–231) at pH 7.0 (18, 19). Membrane interactions of polypeptides representing sequence motifs found in the prion protein have also been studied (2023).In this report we describe investigations of PrP interactions with a membrane mimetic and focus on the mutations P102L, P105L, and A117V, which have been linked with familial Gerstmann-Sträussler-Scheinker syndrome in humans (2, 24, 25). Our interest in these variant proteins is related to open questions about the mechanisms by which pathogenic mutations predispose humans for prion diseases. We studied the interactions of a recombinant wild-type mouse prion protein fragment, mPrP-(90–231), and the variants mPrP[P102L]-(91–231), mPrP[P105L]-(91–231), mPrP[A117V]-(90–231), mPrP[A113V,A115V,A118V]-(90–231), and mPrP[K110I,H111I]-(90–231). For these studies, we used the N-terminally truncated protein composed of residues 90–231. This region contains the transmembrane segment, all known disease-associated point mutations, the entire polypeptide fragment with proteinase K-resistance in PrPSc, which is also sufficient to transmit disease (1, 25, 26). The amino acid substitutions in these variant PrPs are located either within a hydrophobic stretch of residues 112–127, which is highly conserved in mammalian PrPs (27, 28), or in the positively charged segment of residues 95–111 (Fig. 1, B and C). We also included the M129V polymorphism into this study, which was reported to have a significant influence on the susceptibility of humans to prion diseases and on the disease phenotype. For example, the mutations P105L and A117V are only pathogenic in the presence of valine at position 129 (2, 24). The zwitterionic detergent dodecylphosphocholine (DPC, Fig. 1A) was used as a biomembrane mimetic model system, and NMR spectroscopy was employed to screen for protein-detergent micelle interactions, and for the structural characterization of the various prion protein constructs interacting with the detergent micelles.Open in a separate windowFIGURE 1.Detergent and proteins used in this study. A, zwitterionic form of DPC. B, schematic diagram of the mPrP-(90–231) polypeptide indicating the locations of the regular secondary structures, i.e. three α-helices and two strands of an antiparallel β-sheet, a “positively charged cluster” (CC) of amino acid residues in positions 95–111, and a “hydrophobic polypeptide segment” (HPS) comprising residues 112–127. C, amino acid sequence alignment of residues 90–135 for wild-type mPrP-(90–231) and the protein variants studied in this paper, where for each variant mPrP the amino acid replacements are given and identical residues are indicated by dots; the numbering is according to Schätzl et al. (27).  相似文献   

20.
A conformational transition of normal cellular prion protein (PrPC) to its pathogenic form (PrPSc) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild‐type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain‐swapped dimers or closed monomers; the four mutant PrPs crystallized as non‐swapped dimers. Three of the four mutant PrPs aligned to form intermolecular β‐sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular β‐sheets involving the M/V129 polymorphic residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号