首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone-induced calorigenesis contributes to liver oxidative stress and promotes an increased respiratory burst activity in Kupffer cells, which could conceivably increase the expression of redox-sensitive genes, including those coding for cytokines. Our aim was to test the hypothesis that l -3,3',5-triiodothyronine (T3)-induced liver oxidative stress would markedly increase the production of TNF- α by Kupffer cells and its release into the circulation. Sprague-Dawley rats received a single dose of 0.1 mg T3/kg or vehicle (controls) and determinations of liver O2 consumption, serum TNF-α, rectal temperature, and serum T3 levels, were carried out at different times after treatment. Hepatic content of total reduced glutathione (GSH) and biliary glutathione disulfide (GSSG) efflux were measured as indices of oxidative stress. In some studies, prior to T3 injection animals were administered either (i) the Kupffer cell inactivator gadolinium chloride (GdCl3), (ii) the antioxidants α-tocopherol and N-acetyl-L-cysteine (NAC), or (iii) an antisense oligonucleotide against TNF-α (ASO TJU-2755). T3 elicited an 80-fold increase in the serum levels of TNF-α at 22h after treatment, which coincided with the onset of thyroid calorigenesis. Pretreatment with GdCl3 , α-tocopherol, NAC, and ASO TJU-2755 virtually abolished this effect and markedly reduced T3-induced liver GSH depletion and the increases in biliary GSSG efflux. It is concluded that the hyperthyroid state in the rat increases the circulating levels of TNF-α by actions exerted at the Kupffer cell level and these are related to the oxidative stress status established in the liver by thyroid calorigenesis.  相似文献   

2.
p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA.  相似文献   

3.
Valproic acid (VPA) is an antiepileptic drug, which its usage is limited due to its hepatotoxicity. The present study was conducted to investigate the efficacy of zinc (Zn) and selenium (Se), necessary trace elements, against VPA-induced hepatotoxicity in Wistar rats. The animals were divided into five groups: control, VPA 200 mg/kg, VPA + Zn (100 mg/kg), VPA + Se (100 mg/kg), and VPA + Zn + Se. The administration of VPA for four consecutive weeks resulted in decrease in serum level of Zn in rats. Also, an increase in liver marker enzymes (ALT and AST) and also histological changes in liver tissue were shown after VPA administration. Oxidative stress was evident in VPA group by increased lipid peroxidation (LPO), protein carbonyl (PCO), glutathione (GSH) oxidation, and reducing total antioxidant capacity. Zn and Se (100 mg/kg) administration was able to protect against deterioration in liver enzyme, abrogated the histological change in liver tissue, and suppressed the increase in oxidative stress markers. Zn and combination of Zn plus Se treatment showed more protective effects than Se alone. These results imply that Zn and Se should be suggested as effective supplement products for the prevention of VPA-induced hepatotoxicity.  相似文献   

4.
BACKGROUND: Valproic acid (VPA) is used to treat epilepsy and bipolar disorders, as well as for migraine prophylaxis. However, its clinical use is limited by two life-threatening side effects: hepatotoxicity and teratogenicity. To develop a more potent and safer second-generation VPA drug, the urea derivatives of four VPA analogs (2-ethyl-3-methylpentanoyl urea, 2-ethylhexanoyl urea, 2-ethyl-4-methylpentanoyl urea, and 2-methylbutanoyl urea) were synthesized. METHODS: Four CNS-active analogs of a VPA urea derivative testedthe anticonvulsant activity in the maximal electroshock seizure test (MES) and subcutaneous metrazol seizure threshold test (scMet). Teratogenic effects of these compounds were evaluated in NMRI mice susceptible to VPA-induced teratogenicity by comparison with VPA. RESULTS: All four VPA analogs showed superior anticonvulsant activity over VPA. Compared with VPA, which induced neural tube defects (NTDs) in fetuses at 1.8 and 3.6 mmol/kg, the analog derivatives induced no NTDs at any concentration up to 4.8 mmol/kg (except for a single abnormality at 3.6 mmol/kg with 2-ethyl-3-methylpentanoyl urea). Skeletal examination also revealed that the acylurea derivatives induced vertebral and rib abnormalities in fetuses markedly less frequently than VPA. Our results confirmed that the analogue derivatives are significantly less teratogenic than VPA in NMRI mice. CONCLUSIONS: The CNS-active VPA analogs containing a urea moiety, which have better anticonvulsant potency and lack teratogenicity, are good potential candidates as second-generation VPA antiepileptic drugs. Birth Defects Res (Part B) 86:394–401, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

5.
6.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

7.
The current study was designed to investigate the effect and potential mechanism of exogenous administration of S-adenosyl-l-methionine (SAM) on the enhanced hepatotoxicity induced by the Fas agonistic Jo2 antibody plus acute ethanol pretreatment in C57BL/6 mice. Acute ethanol plus Jo2 treatment produces liver toxicity under conditions in which ethanol alone or Jo2 alone do not. SAM significantly attenuated this elevated hepatotoxicity in mice as manifested by a decrease of serum aminotransferases and morphological amelioration. Levels of SAM and activity of methionine adenosyltransferase were lowered by the ethanol plus Jo2 treatment but restored by administration of SAM. The ethanol plus Jo2 treatment increased activity and content of CYP2E1, iNOS content and TNF-α levels; these increases were blunted by SAM. SAM also protected against the elevated oxidative and nitrosative stress found after ethanol plus Jo2, likely due to the decreases in CYP2E1, iNOS and TNF-α. Calcium-induced swelling of mitochondria was enhanced by the ethanol plus Jo2 treatment and this was prevented by SAM. JNK and P38 MAPK were activated by the ethanol plus Jo2 treatment; JNK activation was partially prevented by SAM. It is suggested that SAM protects against the ethanol plus Jo2 toxicity by restoring hepatic SAM levels, preventing the increase in iNOS, CYP2E1 and TNF-α and there by lowering the elevated oxidative/nitrosative stress and activation of the JNK signal pathway, ultimately preventing mitochondrial damage.  相似文献   

8.
Neurons rely on glutathione (GSH) and its degradation product cysteinylglycine released by astrocytes to maintain their antioxidant defences. This is particularly important under conditions of inflammation and oxidative stress, as observed in many neurodegenerative diseases including Alzheimer’s disease (AD). The effects of inflammatory activation on intracellular GSH content and the extracellular thiol profile (including cysteinylglycine and homocysteine) of astrocytes were investigated. U373 astroglial cells exposed to IL-1β and TNF-α for up to 96 h showed a dose-dependent increase in IL-6 release, indicative of increasing pro-inflammatory cellular activation. With increasing concentrations of IL-1β and TNF-α (0.01–1 ng/ml), an increase in both intracellular and extracellular GSH levels was observed, followed by a return to control levels in response to higher concentrations of IL-1β and TNF-α. Extracellular levels of cysteinylglycine decreased in response to all concentrations of IL-1β and TNF-α. In contrast, levels of the neurotoxic thiol homocysteine increased in a dose-dependent manner to IL-1β and TNF-α-induced activation. Our results suggest that chronically activated astrocytes in the brain might fail to adequately maintain GSH substrate delivery to neurons, thus promoting neuronal vulnerability. They might also explain the elevated levels of homocysteine found in the brains and serum of patients with AD.  相似文献   

9.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl?)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl?. Sixteen h after CCl? treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl?-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl? treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl?-treated rats. Our data indicate that cornuside protects the liver from CCl?-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

10.
Valproic acid (VPA) is well established as a first-line and widely used antiepileptic agent. It is well tolerated in most patients and the main issues of concern of VPA are hematological toxicity, tertogenicity and idiosyncratic hepatotoxicity. Recently, researches have showed that VPA monotherapy could cause immunological function disorder, characterized that VPA monotherapy induced imbalance of oxidative/antioxidative status. Measures of oxidative stress were elevated while the antioxidative agent like Reduced glutathione (GSH) was degraded. Besides, antioxidants vitamin C and vitamin E can protect hepatocyte from VPA toxicity. In addition, in a eukaryon, social amoeba dictyostelium discoideum, VPA inhibit the chemotactic cell movement and endocytosis/exocytosis by attenuating its phospholipid signaling. Neutrophil is an important composition of innate immunity, it works mainly through phagocytosis and oxidization. The phagocytosis and oxidization activity are the basic and primitive function of neutrophils which are mimic to that of a eukaryon. Herein, we hypothesize that VPA, may have unexpected effects on the endocytic and oxidative function of neutrophil. The potential unfavorable subsequent events in the individuals with VPA treatment would be in the increased episodes of infection. Any agent to boost neutrophlic endocytic and antioxidative function may be helpful to the epileptic patients.  相似文献   

11.
AimsAcute pancreatitis (AP) is an inflammatory condition wherein pro-inflammatory mediators, oxidative stress, and NF-κB signaling play a key role. Currently, no specific therapy exists and treatment is mainly supportive and targeted to prevent local pancreatic injury and systemic inflammatory complications. This study was aimed to examine whether 1,8-cineole, a plant monoterpene with antioxidant and anti-inflammatory properties could ameliorate cerulein-induced acute pancreatitis.Main methodsAP was induced in Swiss mice by six one hourly injections of cerulein (50 μg/kg, i.p.). 1,8-cineole (100, 200 and 400 mg/kg, p.o.) was administered 1 h prior to first cerulein injection, keeping vehicle and thalidomide treated groups as controls. Blood samples were taken 6-h later to determine serum levels of amylase and lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) and malondialdehyde (MDA) assays, reduced glutathione (GSH) levels, and for nuclear factor (NF)-κB immunostaining.Key findings1,8-cineole effectively reduced the cerulein-induced histological damage, pancreatic edema and NF-κB expression, levels of MPO activity and MDA, and replenished the GSH depletion. Cerulein increased serum levels of amylase and lipase, and pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were also decreased by 1,8-cineole pretreatment, similar to thalidomide, a TNF-α inhibitor. The anti-inflammatory IL-10 cytokine level was, however, enhanced by 1,8-cineole.SignificanceThese findings indicate that 1,8-cineole can attenuate cerulein-induced AP via an anti-inflammatory mechanism and by combating oxidative stress. Further studies are needed to clearly elucidate its benefits in patients on acute pancreatitis.  相似文献   

12.
Molecular Biology Reports - Valproic acid (VPA) is a anticonvulsant and mood-stabilizing agent used to treat epilepsy in patients of all ages. However, it can cause hepatotoxicity with increased...  相似文献   

13.
The aim of this study was to assess the antioxidant and antifibrotic effects of chronic administration of aqueous garlic extract on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in male Wistar albino rats by bile duct ligation and scission (BDL). Aqueous garlic extract (AGE, 1 ml/kg, i.p., corresponding to 250 mg/kg) or saline was administered for 28 days. At the end of the experiment, rats were killed by decapitation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) was also assayed in serum samples. Liver tissues were taken for determination of the free radicals, renal malondialdehyde (MDA) levels, an end product of lipid peroxidation; glutathione (GSH) levels, a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. Hepatic collagen content, as a fibrosis marker was also determined. Serum AST, ALT, LDH, and TNF- alpha levels were elevated in the BDL group as compared to control group, while this increase was significantly decreased by AGE treatment. Hepatic GSH levels, significantly depressed by BDL, were elevated back to control levels in AGE-treated BDL group. Increases in tissue free radical and MDA levels and MPO activity due to BDL were reduced back to control levels by AGE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with AGE treatment. Since AGE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function, it seems likely that AGE with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

14.
Both clinical and experimental evidence indicates that AIDS-related Kaposi's sarcoma (AIDS-KS) has a multifactorial pathogenesis with factors such as HIV viral load, latent virus induction, and opportunistic infections contributing to disease progression. However, a consistent feature that unites these apparently diverse putative etiologic agents is sustained serum elevations of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). While virtually every cell responds to TNF-α with gene activation, the extent of TNF-α-mediated cellular signaling is regulated by a delicate balance between signal activation and signal arresting events. Reactive oxygen intermediates (ROI), which are generated as a consequence of TNF-α membrane interaction, are part of this TNF-α-initiated cellular activation cascade. Previous studies in our laboratory have shown that AIDS-KS cells possess impaired oxygen intermediate scavenging capacities, thereby establishing conditions permissive for the intracellular retention of ROI. In this study, we used cellular capacity to upregulate the cytoprotective enzyme superoxide dismutase (SOD) to address the extent of cellular response to TNF-α. Concurrent with the SOD analyses, nucleotide profiles were obtained to assess cellular bioenergetic responses during TNF-α challenge. Proliferative growth levels of mitochondrial (Mn)SOD activities showed an activity spectrum ranging from lowest activity in AIDS-KS cells, to intermediate levels in matched, nonlesional cells from the AIDS-KS donors, to highest activities in HIV normal fibroblasts. In contrast, following TNF-α challenge, the AIDS-KS and KS donor nonlesional cells showed a 11.89- and 5.86-fold respective increase in MnSOD activity, while the normal fibroblasts demonstrated a 1.35-fold decrease. Subsequent thiol redox modulation studies showed that only the normal fibroblast cultures showed a potentiation of TNF-α-mediated MnSOD upregulation following GSH depletion. In addition, provision of the GSH precursor, N-acetylcysteine during TNF-α challenge only diminished MnSOD activity and mitochondrial compartmentalization in the AIDS-KS cells, a finding that likely reflects the lower levels of reduced thiols in this cellular population. Our data, which show that a perturbation in their cellular thiol redox status accentuates AIDS-KS cellular responsiveness to TNF-α, suggest a biochemical rationale for the recognized TNF-α AIDS-KS clinical correlation. J. Cell. Biochem. 68:339–354, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
《Free radical research》2013,47(12):1195-1204
Abstract

The present study explores expression of NOS and pro-inflammatory cytokines, NOS catalysis and NO mediated modulation of oxidative response and apoptosis in neutrophils from spontaneously hypertensive rats (SHR). Neutrophils from SHR showed ~3-fold increments in iNOS expression, 1.5-fold increments in nOS expression and calcium independent NOS catalysis, whereas GTPCH expression was unaltered. Although phagocytic potential was comparable, neutrophils from SHR demonstrated augmented oxidative burst, which was reduced by NOS inhibition or in the presence of NO scavenger. SHR neutrophils also exhibited enhanced MPO catalysis and [Ca2+]i levels. Levels of TNF-α and IFN-γ were comparable, but IL-1β and CRP levels in SHR plasma were (p<0.05) elevated. This study evidenced significantly enhanced expression of IL-1β in SHR neutrophils whereas those of TNF-α and IFN-γ were unaltered. Moreover neutrophils from SHR exhibited (p<0.01) delayed apoptotic response and sustained NO generation, as evident from elevated nitrite levels in neutrophil culture supernatant above the control levels. Results obtained indicate an augmented NO generation from neutrophils during hypertension which might fortify their attribute to the oxidative and inflammatory stress in SHR, emphasizing the importance of neutrophils in hypertension.  相似文献   

16.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

17.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

18.
The mechanism by which valproic acid (VPA) induces liver injury remains unknown, but it is hypothesized to involve the generation of toxic metabolites and/or reactive oxygen species. This study's objectives were to determine the effect of VPA on plasma and hepatic levels of the F(2)-isoprostane, 15-F(2t)-IsoP, a marker for oxidative stress, and to investigate the influence of cytochrome P450- (P450-) mediated VPA biotransformation on 15-F(2t)-IsoP levels in rats. In rats treated with VPA (500 mg/kg), plasma 15-F(2t)-IsoP was increased 2.5-fold at t(max) = 0.5 h. Phenobarbital pretreatment (80 mg/kg/d for 4 d) in VPA-treated rats increased plasma and liver levels of free 15-F(2t)-IsoP by 5-fold and 3-fold, respectively, when compared to control groups. This was accompanied by an elevation in plasma and liver levels of P450-mediated VPA metabolites. Pretreatment with SKF-525A (80 mg/kg) or 1-aminobenzotriazole (100 mg/kg), which inhibited P450-mediated VPA metabolism, did not attenuate the increased levels of plasma 15-F(2t)-IsoP in VPA-treated groups. Plasma and hepatic levels of 15-F(2t)-IsoP were further elevated after 14 d of VPA treatment compared to single-dose treatment. Our data indicate that VPA increases plasma and hepatic levels of 15-F(2t)-IsoP and this effect can be enhanced by phenobarbital by a mechanism not involving P450-catalyzed VPA biotransformation.  相似文献   

19.
This study investigates the possible use of pentoxifylline (PTX), with antifibrotic and anti-inflammatory properties, as adjuvant in treatment of schistosomal liver fibrosis through determination of some profibrogenic cytokines, oxidative stress and collagen deposition. Animals were classified into seven groups: normal control (i), Schistosoma mansoni-infected untreated (ii), infected treated with praziquantel (PZQ) curative, 1000 mg/kg (iii) or sub curative, 200 mg/kg dose (iv), infected treated with PTX alone (10 mg/kg/day; 5 days/wk) for 8 weeks starting from the 2nd to the 10th week post infection (v), or in addition to curative (vi) or sub curative dose of PZQ (vii). Serum transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), matrix metalloproteinases-2 (MMP-2) and hepatic hydroxyproline (Hyp) content, glutathione related antioxidant enzymes and malondialdehyde (MDA) were determined. Results showed that S. mansoni infection produced remarkable elevations in the serum levels of TGF-β1, TNF-α, MMP-2 and the hepatic contents of Hyp, glutathione reductase (GR), MDA with significant reduction in reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) when compared with their corresponding normal controls. Treatment of infected mice with PTX in addition to PZQ curative rather than its sub curative dose produced the best results evidenced by complete normalization in the previously mentioned serum and hepatic parameters. Conclusion: PTX could attenuate liver fibrosis in early stages of S. mansoni infection through downregulation of profibrogenic cytokines, oxidative stress and collagen deposition.  相似文献   

20.
Summary

Glutathione (GSH) plays several important roles in the protection of cells against oxidative damage, particularly following exposure to xenobiotics. Ferric nitrilotriacetate (Fe-NTA) is a potent depletor of GSH and also enhances tissue lipid peroxidation. In this study, we show the effect of Fe-NTA treatment on hepatic GSH and some of the glutathione metabolizing enzymes, oxidant generation and liver damage. The level of hepatic GSH and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase all decrease following Fe-NTA administration. In these parameters the maximum decrease occurred at 12 h following Fe-NTA treatment. In contrast, γ-glutamyl transpeptidase was increased at this time. Not surprisingly, the increase in the activity of γ-glutamyl transpeptidase and decreases in GSH, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione S-transferase were found to be dependent on the dose of Fe-NTA administered. Fe-NTA administration also enhances the production of H2O2 and increases hepatic lipid peroxidation. Parallel to these changes, Fe-NTA enhances liver damage as evidenced by increases in serum transaminases. Once again, the liver damage is dependent on the dose of Fe-NTA and is maximal at 12 h. Pretreatment of animals with antioxidant, butylated hydroxy anisole (BHA), protects against Fe-NTA-mediated hepatotoxicity further supporting the involvement of oxidative stress in Fe-NTA-mediated hepatic damage. In aggregate, our results indicate that Fe-NTA administration eventuates in decreased hepatic GSH, a fall in the activities of glutathione metabolizing enzymes and excessive production of oxidants, all of which are involved in the cascade of events leading to iron-mediated hepatic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号