首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer preventive agents (CPA) are drugs able to suppress the carcinogen metabolic activation or block the formation of ultimate carcinogens. CPA could act through various molecular mechanisms, for example by interfering with the action of procarcinogen. This could be attained by increasing the phase II enzymes levels of quinone reductase (QR) and glutathione S-transferase (GST). New flavonoids, especially chalcones, have been identified as in vivo monofunctional phase II enzymes inducers. Oral administration of chalcone, 4, and both p-methoxy-substituted chalcones, 6 and 14, increased hepatic QR activity with concomitant decrease in CYP1A1 activity, a member of the most important group of phase I enzymes cytochrome P450. Among them, 4 also increased GST activity. While p-bromo-substituted chalcone 8 was the best inducer of QR it decreased hepatic GST expression and cytochrome P450, being the most effective decreasing cytochrome P450-expression. Thienyl-chalcone 20 being the bioisostere of chalcone 4 did not display the same in vivo profile in the phase I level modification. As chalcone 4 its bioisostere, chalcone 20, displayed low DNA strand breakage and absence of mutagenicity. Also, in our preliminary in vivo tumourigenesis/chemopreventive and acute-toxicity studies, chalcones 4, 6 and 8 showed the best behaviours as CPA justifying additional studies that are ongoing.  相似文献   

3.
The present study reports the purification and characterization of GST from cytosolic fraction of Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be localized mainly in the cytosolic and microsomal fractions. The soluble enzyme from S. cervi was purified to homogeneity using a combination of salt precipitation, centrifugation, cation exchange and GSH-Sepharose affinity chromatography followed by ultrafiltration. SDS-PAGE analysis revealed a single band and activity staining was also detected on PAGE gels. Gel filtration and MALDI-TOF studies revealed that the native enzyme is a homodimer with a subunit molecular mass of 24.6 kDa. Comparison of kinetic properties of the parasitic and mammalian enzymes revealed significant differences between them. The substrate specificity and inhibitor profile of cytosolic GST from S. cervi appeared to be different from GST from mammalian sources.  相似文献   

4.
The cytosolic glutathione transferases (GSTs) with basic pI values have been studied in mouse liver after treatment with 2,3-t-butylhydroxyanisole (BHA), cafestol palmitate (CAF), phenobarbital (PB), 3-methylcholanthrene (3-MC) and trans-stilbene oxide (t-SBO). The cytosolic GST activity was induced by all compounds except for 3-MC. Three forms of GST were isolated by means of affinity chromatography and f.p.l.c. The examination of protein profiles and enzymic activities with specific substrates showed that the three GSTs correspond to those found in control animals, i.e. GSTs MI, MII and MIII. The class Mu GST MIII accounted for the major effect of induction, whereas the class Alpha GST MI and the class Pi GST MII were unchanged or somewhat down-regulated. The greatest induction was obtained with BHA, PB and CAF. The activities of other glutathione-dependent enzymes were also studied. An increase in glutathione reductase and thioltransferase activities was observed after BHA, PB or CAF treatment; glyoxalase I and Se-dependent glutathione peroxidase were depressed in comparison with the control group in all cases studied.  相似文献   

5.
The work presented here deals with the status of glutathione-S-transferase (GST; E.C. 2.5.1.18), the major enzyme of the phase II detoxification pathway, in bovine filarial worms Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be mainly associated with cytosolic and microsomal fractions. The respective specific activities of the enzyme from cytosolic and microsomal fractions of S. cervi females were determined to be 0.122 +/- 0.024 and 0.010 +/- 0.0052 micromol/min/mg protein, respectively. Cytosolic enzyme was found to possess optimal activity between pH 6.5 and 7.5, whereas the microsomal enzyme showed a broad pH optima, centered at pH 6.0. Kinetic studies on the cytosolic and microsomal forms of the enzyme revealed significant differences between them, thereby indicating that microsomal GST from S. cervi is quite distinct to the cytosolic protein catalyzing the same reaction.  相似文献   

6.
Glutathione-S-transferase (GST) has been detected in the adult female Setaria cervi, a bovine filarial parasite. The role of S. cervi GST antigen in inducing immunity in the host against Brugia malayi microfilariae and infective larvae was studied by in vitro antibody dependent cell mediated reaction as well as in situ inoculation of filarial parasites within a microchamber in Mastomys. The immune sera from glutathione-S-transferase immunized Mastomys promoted the adherence of peritoneal exudate cells to B. malayi microfilariae and infective larvae in vitro inducing 80.7 and 77.6% cytotoxicity, respectively in 72 h. In the microchambers implanted in the immunized Mastomys host cells could migrate and adhere to the microfilariae and infective larvae and induced 77.8 and 75% cytotoxicity to B. malayi microfilariae and infective larvae in 72 h, respectively. These results suggest that native GST from S. cervi is effective in inducing protection against heterologous B. malayi filarial parasite and thus has potential in immunoprophylaxis.  相似文献   

7.
Glutathione-S-transferase has been detected in the somatic extract and excretory-secretory products of different life stages of Setaria cervi, a bovine filarial parasite. The enzyme was subjected to MALDI-TOF followed by mass spectrometry and the nearest match found was Pleuronectes platessa GST. Molecular mass of the purified enzyme was approximately 26 kDa as determined by SDS-PAGE and MALDI-TOF. Setaria cervi GST exhibited high activity towards 1-chloro-2,4-dinitrobenzene and ethacrynic acid. Kinetic analysis with respect to 1-chloro-2,4-dinitrobenzene and glutathione as substrate revealed a K(m) of 2.22 mM and 0.61 mM, respectively. The activity was inhibited significantly by Cibacron blue and alpha-tocopherol.  相似文献   

8.
T Ozen  H Korkmaz 《Phytomedicine》2003,10(5):405-415
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.  相似文献   

9.
The present study is an effort to identify a potent chemopreventive agent against various diseases (including cancer) in which oxidative stress plays an important causative role. Here, we investigated the effect of a hydroalcoholic (80% ethanol: 20% distilled water) extract of aerial roots of Tinospora cordifolia (50 and 100mg/kg body wt./day for 2 weeks) on carcinogen/drug metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione (GSH) content, lactate dehydrogenase and lipid peroxidation in liver of 8-week-old Swiss albino mice. The modulatory effect of the extract was also examined on extrahepatic organs, i.e., lung, kidney and forestomach, for the activities of GSH S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD) and catalase. Significant increases in the levels of acid-soluble sulfhydryl (-SH) and cytochrome P(450) contents, and enzyme activities of cytochrome P(450) reductase, cytochrome b(5) reductase, GST, DTD, SOD, catalase, GSH peroxidase (GPX) and GSH reductase (GR) were observed in the liver. Both treated groups showed decreased malondialdehyde (MDA) formation. In lung SOD, catalase and GST; in kidney SOD and catalase; and in forestomach SOD, DTD and GST showed significant increase at both dose levels of treatment. BHA (0.75%, w/w in diet), a pure antioxidant compound, was used as a positive control. This group showed increase in hepatic levels of GSH content, cytochrome b(5), DTD, GST, GR and catalase, whereas MDA formation was inhibited significantly. In the BHA-treated group, the lung and kidney showed increased levels of catalase, DTD and GST, whereas SOD was significantly increased in the kidney and forestomach; the latter also showed an increase in the activities of DTD and GST. The enhanced GSH level and enzyme activities involved in xenobiotic metabolism and maintaining antioxidant status of cells are suggestive of a chemopreventive efficacy of T. cordifolia against chemotoxicity, including carcinogenicity, which warrants further investigation of active principle (s) present in the extract responsible for the observed effects employing various carcinogenesis models.  相似文献   

10.
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.  相似文献   

11.
In the reported work the in vitro activity of a methanolic extract of leaves of Hibiscus mutabilis (Malvaceae) against bovine Setaria cervi worms has been investigated. Bioassay-guided fractionation led to isolation of ferulic acid from ethyl acetate fraction. The crude extract and ferulic acid, the active molecule, showed significant microfilaricidal as well as macrofilaricidal activities against the microfilaria (L(1)) and adult of S. cervi by both a worm motility and MTT reduction assay. The findings thus provide a new lead for development of a filaricidal drug from natural products. To examine the possible mechanism of action of ferulic acid, the involvement of apoptosis in adult worms of S. cervi was investigated. We found extreme cellular disturbances in ferulic acid-treated adult worms characterized by chromatin condensation, in situ DNA fragmentation and nucleosomal DNA laddering. In this work we are reporting for the first time that ferulic acid exerts its antifilarial effect through induction of apoptosis and by downregulating and altering the level of some key antioxidants (GSH, GST and SOD) of the filarial nematode S. cervi. Our results have provided experimental evidence supporting that ferulic acid causes an increased proapoptotic gene expression and decreased expression of anti-apoptotic genes simultaneously with an elevated level of ROS and gradual dose dependent decline of parasitic GSH level. We also observed a gradual dose dependent elevation of GST and SOD activity in the ferulic acid treated worms.  相似文献   

12.
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.  相似文献   

13.
Diethylcarbamazine (DEC) is the main drug used against lymphatic filariasis but it is only microfilaricidal. Hence there is an urgent need for adulticidal drug. Aspirin is known nonsteroidal anti-inflammatory drugs which can inhibit prostaglandin H synthase and also induces apoptosis. Studies presented in this paper demonstrated that exposure of worms to the combination of DEC plus aspirin (DEC + A) at 100 μM concentration irreversibly paralyzed adult worms as well as microfilariae within 2 h. Some of the apoptosis markers viz; DNA fragmentation with accompanying ladder formation, upregulation of Bax expression and decrease in Bcl-2 have suggested that the parasite may be killed due to mitochondrial mediated apoptosis. The levels of several apoptosis regulating proteins and enzymes have also shown to be altered. DEC + A treated worms showed significant decrease in prostaglandin H synthase activity (PGHS) and increase in the level of nitric oxide (NO) and cysteine proteases while glutathione (GSH) and peroxidase level was found to be decreased. NO is known inducer of mitochondrial mediated apoptosis and acts by increasing the permeability of mitochondrial membrane through Bax and allowing cytochrome c to release in cytosol, inducing caspases leading to apoptosis. The DEC + A concentration used in this study is much lower than recommended dose so its intake is safe. Here we report for the first time that combination of DEC and aspirin is more effective and could be used as an adulticidal for control of human filarial infections.  相似文献   

14.
A series of 21 compounds of trisubstituted pyrimidine derivatives have been synthesized and evaluated for their in vitro topoisomerase II inhibitory activity against filarial parasite Setaria cervi. Out of these, seven compounds (8, 11-14, 25 and 28) have shown 60-80% inhibition at 40 and 20 microg/mL concentration. Five compounds (12, 13, 14, 25 and 28) exhibited 70-80% inhibition at 10 microg/mL concentration and three compounds (13, 14 and 28) have shown 40-60% inhibition at 5 microg/mL concentration. All the above mentioned compounds have shown better topo II inhibitory activity than standard antifilarial drug (DEC) and enzyme topo II inhibitors (Novobiocin, Nalidixic acid).  相似文献   

15.
Anti-filarial effects of diethylcarbamazine (DEC), tetracycline (TC) and the combination on Brugia pahangi adult females were studied in 7-day cell-free culture, in terms of microfilaria release, parasite motility, MTT assay for parasite viability and embryogram. TC 50 μg/ml (TC50) effectively reduced microfilaria release from day 1 of culture. Combined with DEC 100 μg/ml (DEC100) or DEC 500 μg/ml (DEC500), microfilaria release reduced further and synergistically. TC50 also reduced motility, but DEC100 and DEC500 did not. The combination of TC50 and DEC500 reduced motility synergistically. The MTT assay supported the results of motility study in general. The embryogram showed that only DEC500 reduced the total number of intrauterine embryos, especially ova, indicating that DEC500 inhibited early embryogenesis. TC50 did not affect the total number of embryos, but resulted in apparent accumulation of microfilariae in the uterus, suggesting that the drug inhibited release of microfilariae in this in vitro system. These results clarified different anti-female mechanisms between DEC and TC. A PCR-based study showed that endosymbiont bacteria, Wolbachia, in B. pahangi females decreased significantly after TC treatment. However, this study could not determine whether the effects of TC were direct or Wolbachia-mediated.  相似文献   

16.
Lymphatic filarial (LF) parasites have been under anti-filarial drug pressure for more than half a century. Currently, annual mass drug administration (MDA) of diethylcarbamazine (DEC) or ivermectin in combination with albendazole (ALB) have been used globally to eliminate LF. Long-term chemotherapies exert significant pressure on the genetic structure of parasitic populations. We investigated the genetic variation among 210 Wuchereria bancrofti populations that were under three different chemotherapy strategies, namely MDA with DEC alone (group I, n = 74), MDA with DEC and ALB (group II, n = 60) and selective therapy (ST) with DEC (group III, n = 34) to understand the impact of these three drug regimens on the parasite genetic structure. Randomly amplified polymorphic DNA profiles were generated for the three groups of parasite populations; the gene diversity, gene flow and genetic distance values were determined and phylogenetic trees were constructed. Analysis of these parameters indicated that parasite populations under ST with a standard dose of DEC (group III) were genetically more diverse (0.2660) than parasite populations under MDA with DEC alone (group I, H = 0.2197) or with DEC + ALB (group II, H = 0.2317). These results indicate that the MDA may reduce the genetic diversity of W. bancrofti populations when compared to the genetic diversity of parasite populations under ST.  相似文献   

17.
Leishmania is a protozoan parasite responsible for significant morbidity and mortality worldwide. Few parasites have been subjected to proteomic analysis to date, but a genome sequencing project for Leishmania major is currently underway, making these studies possible. Here we present a high resolution proteome for L. major comprising almost 3700 spots, making it the most complete two-dimensional gel representation of a parasite proteome generated to date. We have identified a number of landmark proteins by mass spectrometry and show that several of these are valid for the related species Leishmania donovani infantum. We have also observed several forms and fragments of alpha- and beta-tubulins and show that the number and amount of these fragments increase with the age of the parasite culture. Trypanothione reductase (TRYR), which replaces glutathione reductase in trypanosomatid parasites, is an essential protein specific to these parasites and as such is under considerable scrutiny as a drug target. Two-dimensional gel analysis of a L. major strain overexpressing TRYR revealed increased amounts of five spots, all at the predicted molecular weight for TRYR and differing by 0.08 pH units in pI. Mass spectrometry identified four of these as TRYR, leading to the novel suggestion that it could be post-translationally modified. Finally quantitative comparative analysis of a methotrexate-resistant mutant of L. major generated in vitro found that a known primary resistance mediator, the pteridine reductase PTR1, was overexpressed. This constitutes the first proteomic analysis of drug resistance in a parasite and also the clearest identification of a primary drug resistance mechanism using this approach. Together these results provide a framework for further proteomic studies of Leishmania species and demonstrate that these tools are valuable for the essential study of potential drug targets and drug resistance mechanisms.  相似文献   

18.
19.
When 7,12-dimethylbenz[a]anthracene (DMBA) and aflatoxin B1 (AFB1) were activated by hepatocytes from Fischer 344 rats fed a diet containing 2% butylated hydroxyanisole (BHA), frequencies of mutation to 6-thioguanine resistance (TGR) at the HGPRTase gene locus and to ouabain resistance (OuR) at the Na+,K(+)-ATPase gene locus in V79 cells were 30-70% less than those obtained with hepatocytes from untreated controls. A difference in the mutation frequency did not occur when dimethylnitrosamine (DMN) was activated by BHA induced- rather than control-hepatocytes. Analysis of hepatocytes from rats fed 2% BHA showed a small (1.5-fold), but significant, increase in glutathione levels over that in the controls but no change in activity of cytochrome P450. Cytosolic glutathione S-transferase (GST) activity was increased 2-3-fold in hepatocytes from rats fed the 2% BHA diet. These results suggest that mutagenic response to DMBA and AFB1 is reduced, at least in part, because of BHA-induction of hepatocyte GST activity; while activation of DMN can occur by pathway(s) unaffected by BHA-induction of these liver enzymes. In contrast to mutation frequencies, significant differences between BHA- and control-activation in the production of sister-chromatid exchange (SCE) and micronucleus formation (MN) were not detected with any of the genotoxins. It was concluded that the mechanism(s) by which SCE and MN occur are likely unrelated to the capacity of BHA to induced activity of hepatic enzymes, e.g. the GSH S-transferases, that directly or indirectly affect mutation end-points.  相似文献   

20.
Significant differences were observed in GAG metabolism of S. digitata and one of its intermediate vectors, C. quinquefasciatus. Distribution of different components such as hyaluronic acid, heparin-sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, dermatan sulphate and heparin was comparable in both. However, there were quantitative differences; the difference was marked in the activity of enzymes of GAG metabolism in presence and absence of diethylcarbamazine (DEC) a known antifilarial drug. While the activities of beta-galactosidase and beta-N-acetyl glucosaminidase of S. digitata systems showed an inhibition of 96.5 and 92.6% respectively, in the Culex systems they showed an inhibition of 93.3% and an activation of 18% respectively. The differences clearly indicate the existence of basic differences in GAG metabolism of vector and parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号