首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal changes in antioxidant enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.16; glutathione peroxidase, GPx, EC 1.11.1.9; glutathione reductase, GR, EC 1.6.4.2; glucose-6-phosphate dehydrogenase, G6PD, EC 1.1.1.49 and glutathione S -transferase, GST, EC 1.5.1.18) and lipid peroxidation (LPO) levels of livers and gills of female Caspian trout Salmo trutta caspius , Black Sea trout Salmo trutta labrax and mountain trout Salmo trutta macrostigma were investigated. SOD, CAT, GPx, G6PD and GST activities were higher in liver compared to gills of all sub-species; concomitantly, the GR activity was also higher in the livers of S. t. caspius and S. t. labrax , but the reverse was seen in S. t. macrostigma . LPO levels were higher in the gills compared to the liver of all sub-species. There was no general trend in the seasonal changes in the gill antioxidant enzyme (AE) activities or LPO levels. Higher AE activities, however, were found in the liver of each sub-species during autumn, and this coincided with an increase in the gonado-somatic index.  相似文献   

2.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

3.
Three populations of brown trout (Salmo trutta) exposed to different metal levels in their natural environments, were studied with respect to antioxidants metallothionein (MT), superoxide dismutase (SOD) and catalase (CAT) as well as for corresponding mRNA levels. In addition, mRNA levels were studied for glutathione peroxidase (GPx) and glutathione reductase (GR). The Cd/Zn-exposed trout (Naustebekken River) had higher accumulated levels of Cd, Cu and Zn in gills, and higher levels of MT (both protein and mRNA) in liver and kidney as well as in gills compared to the Cu-exposed trout (Rugla River) and trout from an uncontaminated reference river (Stribekken River). Less MT found in the Cu-exposed trout may increase susceptibility to oxidative stress, but no higher levels of antioxidant mRNAs were found in gills of these trouts. The data indicated that chronic exposures of brown trout to Cd, Zn and/or Cu did not involve maintenance of high activities of SOD and CAT enzymes in gills, although SOD mRNA levels were higher in the Cd/Zn-exposed trout. In livers, mRNA levels of SOD, CAT and GPx were higher in the metal-exposed trout, but in the case of GR this was only seen in kidneys of Cd/Zn-exposed trout. However, both metal-exposed groups had higher activities of SOD enzyme in liver compared to the unexposed reference trout, and CAT activity was found to be higher in kidneys of Cu-exposed trout. The Cu-exposed trout did not seem to rely on MT production to avoid Cu toxicity in gills, but rather by keeping the Cu uptake at a low level. A coordinated expression of different stress genes may also be important in chronic metal exposure. It may be concluded that the observed metal effects relies on acclimation rather than on genetic adaptation in the metal exposed populations.  相似文献   

4.
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.  相似文献   

5.
Methyl parathion (MP) is an organophosphorus insecticide used worldwide in agriculture and aquaculture due to its high activity against a broad spectrum of insect pests. The effect of a single exposure to 2 mg L(- 1) of a commercial formulation of MP (MPc: Folisuper 600(R), MP 600 g L(- 1)) on catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) of the liver, white muscle and gills of Brycon cephalus was evaluated after 96 h of treatment. MPc exposure resulted in a significant induction of SOD, CAT and GST activity in all tissues. However, the GPx activity decreased significantly in white muscle and gills, whereas no alterations were observed in hepatic GPx activity. MPc also induced a significant increase in LPO values in the white muscle and gills, while hepatic LPO levels did not show any significant alteration. The current data suggest that MPc has oxidative-stress-inducing potential in fish, and that gills and white muscle are the most sensitive organs of B. cephalus, with poor antioxidant potentials. The various parameters studied in this investigation can also be used as biomarkers of exposure to MPc.  相似文献   

6.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

7.
Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glucose-6-phophate dehydrogenase (G6PDH) were measured in four tissues of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower temperature (21 degrees C) recovery. SOD activity was strongly affected by heat shock, increasing 4-fold in brain, liver, and kidney, but was mainly reversed at recovery. In some tissues, activities of SOD, catalase, GPx, and G6PDH decreased significantly after 1 h heat shock exposure suggesting that thermal inactivation possibly occurred, but were renewed at further exposure. In many cases, 4 h of return to the initial temperature decreased enzyme activities. High correlation coefficients between SOD activities and levels of lipid peroxidation products suggest that these products might be involved in up-regulation of antioxidant defense. Several enzymes (SOD, GST, GR) responded to stress in coordinated manner.  相似文献   

8.
Diving seals experience heart rate reduction and preferential distribution of the oxygenated blood flow to the heart and brain, widespread peripheral vasoconstriction, and selective ischemia in the most hypoxia-tolerant tissues. The first breath after the dive restores the oxygenated blood flow to all tissues and raises the potential for the production of reactive oxygen species (ROS). We hypothesized that in order to counteract the damaging effects of ROS and to tolerate repetitive cycles of ischemia/reperfusion associated with diving, ringed seal (Phoca hispida) tissues have elevated activities of antioxidant enzymes. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were measured by spectrophotometric techniques in heart, kidney, liver, lung, and muscle extracts of ringed seals and domestic pigs (Sus scrofa). The results suggest that in ringed seal heart SOD, GPx and GST activities are an efficient protective mechanism for counteracting ROS production and its deleterious effects. Apparently CAT activity in seal liver and GPx activity in seal muscle participate in the removal of hydroperoxides, while seal lung appears to be protected from oxidative damage by SOD and GPx activities.  相似文献   

9.
The aim of our study was to determine the activity of antioxidant defence (AD) enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the phase II biotransformation enzyme glutathione-S-transferase (GST) in the hepatopancreas, the gills and muscle of Spiny cheek crayfish (Orconectes limosus) from the River Danube and to compare tissue specificities of investigated enzymes. Our results indicated that both specific and total SOD activities in the hepatopancreas were lower compared to the gills and muscle. Total SOD activity in the gills was lower with respect to that in muscle. CAT and GSH-Px (both specific and total) activities were higher in the hepatopancreas compared to those in the gills and muscle. In the gills the specific and total GR activities were higher than in the hepatopancreas and muscle. The specific and total GST activities were higher in the hepatopancreas compared with the gills and muscle. Our study represents the first comprehensive report of AD enzymes in tissues of O. limosus caught in the River Danube. The noted tissue distributions of the investigated AD enzyme activities most likely reflected different metabolic activities and different responses to environmental conditions in the examined tissues.  相似文献   

10.
All animals face the possibility of limitations in food resources that could ultimately lead to mortality caused by starvation. The primary goal of this study was to characterize the various physiological strategies that allow fish to survive starvation. A multiparametric approach, including morphological biomarkers, blood plasma metabolites, oxidative stress and energy reserves, was used to assess starvation effects on the fish Hoplosternum littorale. Adult specimens were maintained at four experimental groups: control (fed ad libitum), and starved (not fed) fish for 7 and 28 days. Significant changes were observed not only after 28 days, but also after 7 days of starvation. In the shorter period, the hepatosomatic index as well as plasma triglycerides and glucose were significantly lower in starved fish than in the control ones. These results were accompanied by reduced lipid, glycogen and protein reserves in liver and diminished glycogen content in muscle, suggesting the need of these macromolecules as fuel sources. In addition, increased antioxidant enzyme activities were observed in gills, without evidence of oxidative stress in any of the evaluated tissues. Most significant differences were found in 28-days starved fish: total body weight together with the hepatosomatic index was lower when compared to control fish. The plasmatic metabolites tested (glucose, triglyceride, cholesterol and protein), all energy reserves in liver and glycogen content in muscle decreased in 28-days starved fish. Lipid oxidative damage was reported in liver, kidney and brain, and antioxidant enzymes (GST, GR, GPx and CAT) were activated in gills. According to the multivariate analysis, oxidative stress markers and metabolic parameters were key biomarkers that contributed in separating starved from fed fish. Our study allowed an integrated assessment of the fish response to this particular condition.  相似文献   

11.
Cadmium (Cd) is one of the most toxic heavy metals that are widespread in inshore sediments of China, and can induce the production of toxic hydroxyl radicals that cause cell damage. The present study investigated the effect of two Cd concentrations (the final Cd concentration of 0.025 and 0.05 mg/L, prepared with CdCl2 x 2.5H2O) on metallothioneins (MT), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and DNA integrity (DNA strand breaks) for up to 15 days in the gills and hepatopancreas of the portunid crab Charybdis japonica. The result indicated that MT was significantly induced after 3 days, with a dose-response relation between MT contents and Cd concentrations in two tissues and has a time-response relation in hepatopancreas during the experimental period; SOD, CAT and GPx activities could be stimulated after 0.5 day, all attained peak value and then reduced during the experimental period, but were not inhibited at day 15, except SOD and CAT in gills. Gill was more sensitive to Cd than hepatopancreas, and the hepatopancreas was the main detoxification tissue to deal with oxyradicals. DNA strand breaks were induced after 0.5 day, and there was a positive dose-response relation between DNA damage levels and Cd concentrations in gills, rather than hepatopancreas due to higher DNA repair activities. These results suggest the mechanisms of Cd toxicity and detoxification strategies in both tissues of C. japonica; in addition, the use of the biomarkers as indices for biomonitoring potential toxic effect of Cd in situ is discussed.  相似文献   

12.
T Ozen  H Korkmaz 《Phytomedicine》2003,10(5):405-415
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.  相似文献   

13.
14.
The effect of long-term administration of alcohol and cigarette smoke independently and both in combination on lipid peroxidation and antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) was studied in liver, kidney, heart and lungs of albino rats. The levels of peroxidation products viz., malondialdehyde, hydroperoxides and conjugated dienes were increased in all the tissues of alcohol administered and smoke-exposed rats. Activities of SOD and CAT were decreased in alcohol-treated and alcohol and smoke combination groups, but increased in smoke-exposed group. Activities of GPx and GST have shown an increase, while concentration of reduced glutathione was found decreased in all the three groups.  相似文献   

15.
Deoxynivalenol (DON) is one of the most frequently detected mycotoxins in agricultural commodities used as animal feedstuff in Central Europe. This study focuses on determining effects of diets containing DON on oxidative stress markers and detoxifying enzymes in rainbow trout (Oncorhynchus mykiss). The fish were fed with commercial pellets containing DON at a concentration of 2 mg kg?1. Selected enzymes were measured in liver, gill and caudal kidney of the fish after 23 and 32 days of the experiment. Significant differences between the control and experimental groups were observed concerning activities of glutathione peroxidase (GPx) in kidney, glutathione reductase (GR) in gill and kidney, catalase (CAT) in kidney and liver and glutathione S‐transferase (GST) in gill and liver. No significant differences were found for superoxide dismutase (SOD) gene expression, lipid peroxidation (TBARS) and the ferric reducing ability of plasma (FRAP). The data show that DON in the diet at the concentration below EC recommendation (2006/576/EC) induces oxidative stress in the rainbow trout.  相似文献   

16.
Here, we study a cycle of long-term starvation followed by refeeding in relation to the kinetics of serine dehydratase (SerDH) and tyrosine aminotransferase (TyrAT) in rainbow trout (Oncorhynchus mykiss). We determine SerDH- and TyrAT- specific activity at different substrate concentrations in liver and white muscle of juvenile trout starved for 70 days and then refed for 6 hr, 32 hr, 4 days, and 9 days. SerDH showed a hyperbolic kinetic with a K(m) for L-serine of 77.07+/-8.78 mM in the liver of control trout. After 70 days of starvation, the SerDH activity at saturate substrate concentration rose 100% over control. No significant changes were found in the K(m) values of the enzyme. After refeeding, the SerDH activity declined to control values. TyrAT also showed a hyperbolic kinetic with a K(m) for L-tyrosine of 1.86+/-0.12 and 2.55+/-0.57 mM in liver and white muscle, respectively. In starved trout, TyrAT activity in liver and white muscle was about 64 and 267%, respectively, higher than control. After 9 days of refeeding, the control values recovered, although, at 6 hr of refeeding, hepatic TyrAT activity was higher than that for starvation. This work shows that SerDH and TyrAT are present in rainbow trout and that the two enzymes have regulatory functions in the catabolism of their respective amino acids in this species.  相似文献   

17.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

18.
Comparative studies were performed on the antioxidant enzyme activities and thiobarbituric acid reactive substance (TBARS) concentration in liver and red cells of two groups of rainbow trout (Oncorhynchus mykiss). The fish of the first group were cultured in freshwater and the others were adapted to sea-water by by being transferred from freshwater at 5-6 months of age. Catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were significantly higher in hepatic and extrahepatic tissues in both of the fish groups. Superoxide dismutase (SOD) activities were found lower in the seawater-adapted trout than in the freshwater-cultured trout. In both tissues, TBARS were found significantly higher in the seawater-adapted trout than in the freshwater trout. It was also observed that the red cells of the seawater-adapted trout were much more resistant to oxidative stress than the red cells of the freshwater-cultured trout. The results implicate that antioxidant capacities in the seawater-adapted trout and freshwater trout may be related to physical and chemical characteristics of the environment.  相似文献   

19.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

20.
The activities of catalase (Cat), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione transferase (GST), glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde3-phosphate dehydrogenase (G3PD) were studied in tissue and hemolymph of susceptible (S) (EgBS(2)) and resistant (R) (EgBR(2)) Biomphalaria alexandrina snails. The results showed that CAT and GST were higher in the hemolymph of snails susceptible to Schistosoma mansoni than in that of snails resistant to infestation, while SOD and G3PD were lower in the susceptible snails. The role of these enzymes as free radical scavengers was traced 1 and 24 h after infection of the two snail lines with S. mansoni. Moreover, the activities of SOD and G3PD were also measured 2 and 4 weeks post infection. The results revealed that the overall enzymatic activities were higher in susceptible than in resistant snail tissues. After 1 h of infection, all enzymes were increased in R and S snails except GST and G6PD which decreased in S snails. After 24 h of infection, GST increased in S snails and G3PD decreased in both S and R snails while other enzymes reached normal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号