首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

2.
We have recently characterized a mutant insulin receptor (Y/F2) in which the two tyrosines in the carboxyl terminus (Tyr1316, Tyr1322) were mutated to phenylalanine. Compared with wild type receptors, the Y/F2 receptor exhibited markedly enhanced sensitivity to insulin-stimulated DNA synthesis with normal insulin-stimulated glucose uptake (Takata, Y., Webster, N. J. G., and Olefsky, J. M. (1991) J. Biol. Chem. 266, 9135-9139). In this paper, we present further evidence for the divergence of the metabolic and mitogenic signaling pathways utilized by the insulin receptor. The mutant receptor showed normal sensitivity and responsiveness for insulin-stimulated glucose incorporation into glycogen. The insulin sensitivity for phosphorylation of two substrates (pp180 and pp220) was the same in both Y/F2 cells and HIRc cells. Phosphotyrosine content, however, was greater in Y/F2 cells than in HIRc cells, especially in the basal state. Insulin stimulated S6 kinase activity 2-6-fold, with an ED50 of -10 nM in Rat 1 cells and 0.5 nM in HIRc cells. The sensitivity to insulin was enhanced in Y/F2 cells with an ED50 of 0.1 nM. These effects were insulin-specific, since insulin-like growth factor (IGF)-I-stimulated mitogenesis was normal. In summary: 1) Y/F2 receptors exhibit normal metabolic and enhanced mitogenic signaling; 2) the enhanced mitogenic signaling is specific for the insulin receptor in the Y/F2 cells, since IGF-I-stimulated mitogenesis is normal; 3) Y/F2 cells display increased endogenous substrate phosphorylation and augmented insulin-stimulated S6 kinase activity placing these responses among insulin's mitogenic effects; and 4) these results are consistent with the concept that the COOH-terminal tyrosine residues of the insulin receptor are normally inhibitory to mitogenic signaling.  相似文献   

3.
We have studied the function of a mutant human insulin receptor in which two COOH-terminal autophosphorylation sites (Tyr-1316 and -1322) were replaced by phenylalanine (F/Y COOH-terminal 2 tyrosines (CT2)). In addition, we have also constructed a mutant receptor in which Lys-1018 in the ATP-binding site was changed to arginine (R/K 1018). Both the wild type insulin receptor (HIR) and the mutant receptors were expressed in Chinese hamster ovary (CHO) cells by stable transfection. Autophosphorylation of solubilized and partially purified F/Y CT2 was decreased by approximately 30% compared with the HIR. Tyrosine kinase activities of F/Y CT2 and HIR toward exogenous substrates were almost equal. When CHO cells transfected with F/Y CT2 (CHO-F/Y CT2) were stimulated with insulin, autophosphorylation of the beta-subunit of the insulin receptor and the phosphorylation of an endogenous substrate (pp185) in the intact cell were normal compared with cells expressing HIR (CHO-HIR). CHO-F/Y CT2 exhibited the same insulin sensitivity as CHO-HIR with respect to 2-deoxyglucose uptake. However, the dose-response curve of insulin-stimulated thymidine incorporation in CHO-F/Y CT2 was shifted to the left (approximately 5-7-fold) compared with that in CHO-HIR. There was no significant difference in insulin-like growth factor 1-stimulated thymidine incorporation between CHO-F/Y CT2 and CHO-HIR. Furthermore, the dose-response curve of insulin-stimulated kinase activity toward myelin basic protein in CHO-F/Y CT2 was also shifted to the left (approximately 5-fold) compared with that in CHO-HIR. Kinase assays in myelin basic protein-containing gels revealed that both species of MAP kinases (M(r) 44,000, 42,000) were more sensitive to activation by insulin in CHO-F/Y CT2 than in CHO-HIR. This observation was confirmed in immune complex kinase assays toward microtubule-associated protein 2 (MAP2) using specific antibodies against mitogen-activated protein (MAP) kinase. R/K 1018 mutant insulin receptors showed an absence of insulin-stimulated kinase activity and CHO cells transfected with R/K 1018 (CHO-R/K 1018) failed to enhance 2-deoxyglucose uptake or thymidine incorporation in response to insulin. In addition, R/K 1018 kinase-defective insulin receptors were unable to mediate insulin-stimulated MAP kinase activation. These data suggest that: 1) tyrosine kinase activity of the insulin receptor is required for activation of insulin-stimulated MAP kinases and 2) phosphorylation of COOH-terminal tyrosine residues may play an inhibitory role in mitogenic signaling through regulation of MAP kinases.  相似文献   

4.
Our previous studies have shown that the deletion of the insulin receptor carboxyl terminus impairs metabolic, but augments mitogenic, signaling (McClain, D. A., Maegawa, H., Levy, J., Huecksteadt, T., Dull, T. J., Lee, J., Ullrich, A., and Olefsky, J. M. (1988) J. Biol. Chem. 263, 8904-8911; Thies, R.S., Ulrich, A., and McClain, D. A. (1989) J. Biol. Chem. 264, 12820-12825). To explore further the regulatory role of the insulin receptor carboxyl terminus, a mutant insulin receptor was constructed in which the two tyrosines (Y1316 and Y1322) on the carboxyl terminus were replaced with phenylalanines. Rat 1 fibroblasts expressing high levels of this mutant receptor (Y/F2 cells) exhibited normal insulin binding and normal insulin internalization. The absence of the two tyrosines in the carboxyl terminus did not affect the phosphotransferase activity of the beta-subunit and insulin-stimulated glucose transport. However, the Y/F2 cells showed markedly enhanced sensitivity for insulin-stimulated DNA synthesis. Dose-response curves for both insulin-stimulated thymidine uptake and 5-bromo-2-deoxyuridine incorporation in the Y/F2 cell lines were shifted to the left (4-10-fold) compared with those observed in the cells expressing similar numbers of wild type receptors. Thus, the two tyrosines of the insulin receptor carboxyl terminus do not modulate the kinase function of the insulin receptor, although they are autophosphorylated in native receptors. Moreover, these tyrosines are not necessary for stimulation of glucose transport. On the other hand, these results suggest that the two carboxyl-terminal tyrosine residues exert an inhibitory effect on mitogenic signaling in native insulin receptors.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Role of IRS-1-GRB-2 complexes in insulin signaling.   总被引:17,自引:13,他引:4       下载免费PDF全文
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.  相似文献   

12.
Microglial cells release monocyte chemoattractant protein-1 (MCP-1) which amplifies the inflammation process by promoting recruitment of macrophages and microglia to inflammatory sites in several neurological diseases. In the present study, dexamethasone (Dex), an anti-inflammatory and immunosuppressive drug has been shown to suppress the mRNA and protein expression of MCP-1 in activated microglia resulting in inhibition of microglial migration. This has been further confirmed by the chemotaxis assay which showed that Dex or MCP-1 neutralization with its antibody inhibits the microglial recruitment towards the conditioned medium of lipopolysaccharide (LPS)-treated microglial culture. This study also revealed that the down-regulation of the MCP-1 mRNA expression by Dex in activated microglial cells was mediated via mitogen-activated protein kinase (MAPK) pathways. It has been demonstrated that Dex inhibited the phosphorylation of Jun N-terminal kinase (JNK) and p38 MAP kinases as well as c-jun, the JNK substrate in microglia treated with LPS. The involvement of JNK and p38 MAPK pathways in induction of MCP-1 production in activated microglial cells was confirmed as there was an attenuation of MCP-1 protein release when microglial cells were treated with inhibitors of JNK and p38. In addition, Dex induced the expression of MAP kinase phosphatase-1 (MKP-1), the negative regulator of JNK and p38 MAP kinases in microglial cells exposed to LPS. Blockade of MKP-1 expression by triptolide enhanced the phosphorylation of JNK and p38 MAPK pathways and the mRNA expression of MCP-1 in activated microglial cells treated with Dex. In summary, Dex inhibits the MCP-1 production and subsequent microglial cells migration to the inflammatory site by regulating MKP-1 expression and the p38 and JNK MAPK pathways. This study reveals that the MKP-1 and MCP-1 as novel mediators of biological effects of Dex may help developing better therapeutic strategies for the treatment of patients with neuroinflammatory diseases.  相似文献   

13.
MAP kinase-dependent phosphorylation processes have been shown to interfere with the degradation of the antiapoptotic protein Bcl-2. The cytosolic MAP kinase phosphatase MAP kinase phosphatase-3 (MKP-3) induces apoptosis of endothelial cells in response to tumor necrosis factor alpha (TNFalpha) via dephosphorylation of the MAP kinase ERK1/2, leading to Bcl-2 proteolysis. Here we report that the endothelial cell survival factor nitric oxide (NO) down-regulated MKP-3 by destabilization of MKP-3 mRNA. This effect of NO was paralleled by a decrease in MKP-3 protein levels. Moreover, ERK1/2 was found to be protected against TNFalpha-induced dephosphorylation by coincubation of endothelial cells with the NO donor. Subsequently, both the decrease in Bcl-2 protein levels and the mitochondrial release of cytochrome c in response to TNFalpha were largely prevented by exogenous NO. In cells overexpressing MKP-3, no differences in phosphatase activity in the presence or absence of NO were found, excluding potential posttranslational modifications of MKP-3 protein by NO. These data demonstrate that upstream of the S-nitrosylation of caspase-3, NO exerts additional antiapoptotic effects in endothelial cells, which rely on the down-regulation of MKP-3 mRNA.  相似文献   

14.
15.
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin's inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin's effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Ialpha (cGK Ialpha) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Ialpha enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Ialpha signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.  相似文献   

16.
17.
Stimulation of pheochromocytoma PC12 cells by cAMP-elevating agents caused the induction of the immediate early gene 3CH134, which encodes MAP kinase phosphatase-1 (MKP-1). Forskolin was as potent as serum in stimulating MKP-1 gene expression, whereas dibutyryl-cAMP and neuropeptide PACAP were less effective. Induction of the MKP-1 gene was accompanied by neo-synthesis of MKP-1 protein. MAP kinase activation was not involved in the cAMP-induced MKP-1 gene expression. The MAP kinase inactivation, that would result from MKP-1 induction in response to increased intracellular cAMP level, contributes to explain how hormones or neurotransmitters signaling through cAMP influence cell growth and differentiation.  相似文献   

18.
The mechanisms for the effect of hyperglycemia on insulin-induced mitogenesis were investigated using rat vascular smooth muscle cells (VSMC). VSMC were preincubated in serum-free medium with low (5 mM) glucose (LG condition) or high (25 mM) glucose (HG condition), and examined for DNA synthesis using bromodeoxyuridine (BrdUrd) incorporation. Mitogen-activated protein kinase (MAPK) activity and MAPK phosphatase (MKP-1) protein expression were detected by Western blot analysis. Phosphatidylinositol 3-kinase (PI-3K) activity was detected by thin layer chromatography. Insulin induced a dose-dependent increase in BrdUrd incorporation (123.3+/-2.6% over basal level with 1 microM insulin) in the LG group and this effect was significantly enhanced (161.6+/-10.4% over basal level) in the HG group. In the LG group, MAPK activity was transient with a peak activation (137.4+/-11.2% over basal level) after 10 min exposure to 100 nM insulin. In the HG group, the MAPK activity was significantly potentiated (two-fold compared to the LG group) and was sustained even after 60 min. Insulin also induced PI-3K activity and MKP-1 expression, both of which were blocked by the PI-3K inhibitor wortmannin. In the HG group, insulin-induced PI-3K and MKP-1 expression was almost abolished. In conclusion, high glucose enhances insulin-induced mitogenesis associated with the potentiation of insulin-stimulated MAPK activity in VSMC. These effects of glucose might in part be due to the attenuation of MKP-1 expression through the blockage of the insulin-PI-3K signal pathway.  相似文献   

19.
20.
Exposure of macrophages to LPS elicits the production of proinflammatory cytokines, such as TNF-alpha, through complex signaling mechanisms. Mitogen-activated protein (MAP) kinases play a critical role in this process. In the present study, we have addressed the role of MAP kinase phosphatase-1 (MKP-1) in regulating proinflammatory cytokine production using RAW264.7 macrophages. Analysis of MAP kinase activity revealed a transient activation of c-Jun N-terminal kinase (JNK) and p38 after LPS stimulation. Interestingly, MKP-1 was induced concurrently with the inactivation of JNK and p38, whereas blocking MKP-1 induction by triptolide prevented this inactivation. Ectopic expression of MKP-1 accelerated JNK and p38 inactivation and substantially inhibited the production of TNF-alpha and IL-6. Induction of MKP-1 by LPS was found to be extracellular signal-regulated kinase dependent and involved enhanced gene expression and increased protein stability. Finally, MKP-1 expression was also induced by glucocorticoids as well as cholera toxin B subunit, an agent capable of preventing autoimmune diseases in animal models. These findings highlight MKP-1 as a critical negative regulator of the macrophage inflammatory response, underscoring its premise as a potential target for developing novel anti-inflammatory drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号