首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This comparative study of the gill morphometrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high‐pressure branchial flow associated with fast, continuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non‐tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morphometric features contributing to the large gill surface areas of these high‐energy demand teleosts include: 1) a relative increase in the number and length of gill filaments that have, 2) a high lamellar frequency (i.e., the number of lamellae per length of filament), and 3) lamellae that are long and low in profile (height), which allows a greater number of filaments to be tightly packed into the branchial cavity. Augmentation of gill area through these morphometric changes represents a departure from the general mechanism of area enhancement utilized by most teleosts, which lengthen filaments and increase the size of the lamellae. The gill design of scombrids and billfishes reflects the combined requirements for ram ventilation and elevated energetic demands. The high lamellar frequencies and long lamellae increase branchial resistance to water flow which slows and streamlines the ram ventilatory stream. In general, scombrid and billfish gill surface areas correlate with metabolic requirements and this character may serve to predict the energetic demands of fish species for which direct measurement is not possible. The branching of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen‐poor waters at depth. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Fish gill morphology: inside out   总被引:13,自引:0,他引:13  
In this short review of fish gill morphology we cover some basic gross anatomy as well as in some more detail the microscopic anatomy of the branchial epithelia from representatives of the major extant groups of fishes (Agnathans, Elasmobranchs, and Teleosts). The agnathan hagfishes have primitive gill pouches, while the lampreys have arch-like gills similar to the higher fishes. In the lampreys and elasmobranchs, the gill filaments are supported by a complete interbranchial septum and water exits via external branchial slits or pores. In contrast, the teleost interbranchial septum is much reduced, leaving the ends of the filaments unattached, and the multiple gill openings are replaced by the single caudal opening of the operculum. The basic functional unit of the gill is the filament, which supports rows of plate-like lamellae. The lamellae are designed for gas exchange with a large surface area and a thin epithelium surrounding a well-vascularized core of pillar cell capillaries. The lamellae are positioned for the blood flow to be counter-current to the water flow over the gills. Despite marked differences in the gross anatomy of the gill among the various groups, the cellular constituents of the epithelium are remarkably similar. The lamellar gas-exchange surface is covered by squamous pavement cells, while large, mitochondria-rich, ionocytes and mucocytes are found in greatest frequency in the filament epithelium. Demands for ionoregulation can often upset this balance. There has been much study of the structure and function of the branchial mitochondria-rich cells. These cells are generally characterized by a high mitochondrial density and an amplification of the basolateral membrane through folding or the presence of an intracellular tubular system. Morphological subtypes of MRCs as well as some methods of MRC detection are discussed.  相似文献   

3.
Branchial innervation   总被引:4,自引:0,他引:4  
Inspection of the dorsal end of fish gills reveals an impressive set of nerve trunks, connecting the gills to the brain. These trunks are branches of cranial nerves VII (the facial) and especially IX (the glossopharyngeal) and X (the vagus). The nerve trunks carry a variety of nervous pathways to and from the gills. A substantial fraction of the nerves running in the branchial trunks carry afferent (sensory) information from receptors within the gills. There are also efferent (motor) pathways, which control muscles within the gills, blood flow patterns and possibly secretory functions. Undertaking a more careful survey of the gills, it becomes evident that the arrangement of the microanatomy (particularly the blood vessels) and its innervation are strikingly complex. The complexity not only reflects the many functions of the gills but also illustrates that the control of blood flow patterns in the gills is of crucial importance in modifying the efficiency of its chief functions: gas transfer and salt balance. The "respiratory-osmoregulatory compromise" is maintained by minimizing the blood/water exchange (functional surface area of the gills) to a level where excessive water loss (marine teleosts) or gain (freshwater teleosts) is kept low while ensuring sufficient gas exchange. This review describes the arrangement and mechanisms of known nervous pathways, both afferent and efferent, of fish (notably teleosts) gills. Emphasis is placed primarily on the autonomic nervous system and mechanisms of blood flow control, together with an outline of the afferent (sensory) pathways of the gill arches.  相似文献   

4.
The fish gill is the primary regulatory interface between internal and external milieu and a variety of neurocrine, endocrine, paracrine, and autocrine signals coordinate and control gill functions. Many of these messengers also affect gill vascular resistance, and they, in turn, may be inactivated (or activated) by branchial vessels. Few studies have critically addressed how flow is distributed within the gill filament, the physiological consequences thereof, or the impact of gill hormone metabolism on gill and systemic homeostasis. In most fish, the entire cardiac output perfuses the arterioarterial pathway, and this network probably accounts for the majority of passive- and stimulus-induced changes in vascular resistance. The in-series arrangement of the extensive gill microcirculation with systemic vessels is also indicative of a high capacity for metabolism of plasma-borne messengers as well as xenobiotics. Adenosine, arginine vasotocin (AVT), and endothelin (ET) are the most potent gill constrictors identified to date, and all decrease lamellar perfusion. Perhaps not surprising, they are also inactivated by gill vessels. Acetylcholine favors perfusion of the alamellar filamental vasculature, although the physiological relevance of acetylcholine-mediated responses remains unclear. Angiotensin, bradykinin, urotensin, natriuretic peptides, prostaglandins, and nitric oxide are vasoactive to varying degrees, but their effects on intrafilamental blood flow are unknown. If form befits function, then the complex vascular anatomy of the gill suggests a level of regulatory sophistication unparalleled in other vertebrate organs. Resolution of these issues will be technically challenging but unquestionably rewarding.  相似文献   

5.
Summary A light and electron microscopic study was made of the structure of the gill arch, filament and secondary lamella of Salmo gairdneri R. Blood pathways through the gill were traced from serial histological sections, and from the examination of ink perfused tissue and perspex casts formed following resin injection of the circulatory system.The epithelium covering the gill consists of unspecialized, dark, chloride and mucous cells. The distribution of specialized cells appears to be related to gill function. The basement membrane underlying the epithelium consists of three layers, the inner collagen layer being continuous with the connective tissue core of the gills.Blood supply to the secondary lamellar respiratory surface is via branchial, filament and secondary lamellar arteries. Blood spaces of the secondary lamellae are delimited by pillar cells containing what appears to be contractile material. The marginal channel of each lamella is bounded distally by cells of endothelial origin. A network of lymph spaces within the filaments connects with efferent branchial arteries. Nutritionary capillaries within the filaments connect with afferent branchial arteries. No shunts between afferent and efferent filament arteries were found.Data from this study and previous physiological and histopathological studies suggest a mechanism for the control of blood flow to suit the respiratory requirements of the fish. This mechanism involves a system of recruitment of additional respiratory units and changes in overall blood flow patterns.This work formed part of a thesis submitted for the degree of Doctor of Philosophy in 1971 and for which M. M. was in receipt of a studentship from the Natural Environmental Research Council. The authors are grateful for the support given by research grants from the M.R.C (P.T.) and the N.E.R.C. (M.M.), and to Prof. G. M. Hughes in whose department the work was carried out.  相似文献   

6.
The effects of gill abrasion and experimental infection with Tenacibaculum maritimum were assessed in Atlantic salmon Salmo salar with underlying amoebic gill disease. The respiratory and acid-base parameters arterial oxygen tension (P(a)O2), arterial whole blood oxygen content (C(a)O2), arterial pH (pHa), haematocrit and haemoglobin concentrations were measured at intervals over a 48 h recovery period following surgical cannulation of the dorsal aorta. Mortality rates over the recovery period were variable, with gill abrasion and inoculation with T. maritimum causing the highest initial mortality rate and unabraded, uninoculated controls showing the lowest overall mortality rate. Fish with abraded gills tended to show reduced P(a)O2 and lower C(a)O2 compared with unabraded fish. Infection with T. maritimum had no effect on P(a)O2 or C(a)O2. All fish showed an initial alkalosis at 24 h post-surgery/inoculation which was more pronounced in fish inoculated with T. maritimum. There were no significant effects of gill abrasion or infection upon the ratio of oxygen specifically bound to haemoglobin or mean cellular haemoglobin concentration. Histologically, 48 h following surgery, abraded gills showed multifocal hyperplastic lesions with pronounced branchial congestion and telangiectasis, and those inoculated with T. maritimum exhibited focal areas of branchial necrosis and erosion associated with filamentous bacterial mats. All fish examined showed signs of amoebic gill disease with multifocal hyperplastic and spongious lesions with parasome-containing amoeba associated with the gill epithelium. The results suggest that respiratory compromise occurred as a consequence of gill abrasion rather than infection with T. maritimum.  相似文献   

7.
The gill is both a site of gas transfer and an important location of chemoreception or gas sensing in fish. While often considered separately, these two processes are clearly intricately related because the gases that are transferred between the ventilatory water and blood at the gill are simultaneously sensed by chemoreceptors on, and within, the gill. Modulation of chemoreceptor discharge in response to changes in O(2) and CO(2) levels, in turn, is believed to initiate a series of coordinated cardiorespiratory reflexes aimed at optimising branchial gas transfer. The past decade has yielded numerous advances in terms of our understanding of gas transfer and gas sensing at the fish gill, particularly concerning the transfer and sensing of carbon dioxide. In addition, recent research has moved from striving to construct a single model that covers all fish species, to recognition of the considerable inter-specific variation that exists with respect to the mechanics of gas transfer and the cardiorespiratory responses of fish to changes in O(2) and CO(2) levels. The following review attempts to integrate gas transfer and gas sensing at the fish gill by exploring recent advances in these areas.  相似文献   

8.
Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes.  相似文献   

9.
Three lineages of cartilaginous fishes have independently evolved filter feeding (Lamniformes: Megachasma and Cetorhinus, Orectolobiformes: Rhincodon, and Mobulidae: Manta and Mobula); and the structure of the branchial filters is different in each group. The filter in Rhincodon typus has been described; species within the Lamniformes have simple filamentous filters, but the anatomy and ultrastructure of the branchial filter in the mobulid rays varies and is of functional interest. In most fishes, branchial gill rakers are elongated structures located along the anterior ceratobranchial and/or epibranchial arches; however, mobulid gill rakers are highly modified, flattened, lobe‐like structures located on the anterior and posterior epibranchial elements as well as the ceratobranchials. The ultrastructure of the filter lobes can be smooth or covered by a layer of microcilia, and some are denticulated along the dorsal and ventral lobe surface. Flow through the mobulid oropharyngeal cavity differs from other filter‐feeding fishes in that water must rapidly deviate from the free stream direction. There is an abrupt 90° turn from the initial inflowing path to move through the laterally directed branchial filter pores, over the gill tissue, and out the ventrally located gill slits. The deviation in the flow must result in tangential shearing stress across the filter surface. This implies that mobulids can use cross‐flow filtration in which this shearing force serves as a mechanism to resuspend food particles initially caught by sieving or another capture mode. These particles will be transported by the cross filter flow toward the esophagus. We propose that species with cilia on the rakers augment the shear mediated movement of particles along the filter with ciliary transport. J. Morphol. 274:1026–1043, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Histochemical and immunohistochemical study was carried out on nitrinergic innervation and neuroendocrine system in the gill epithelium of the abyssal fish Coelorhynchus coelorhynchus. The results showed that nNOS-positive nerve fibers, originating from the branchial arch were present in the subepithelial tissue of branchial primary filament. nNOS-positive neuroendocrine cells were also present in the primary filaments and secondary lamellae. Numerous mucous cells in the gill epithelium were AB/PAS-positive, while sialic acid was absent as confirmed by neuraminidase reaction and WGA lectin histochemistry. The mucus compounds in abyssal teleost fish are different from those found in pelagic species, being related to their living conditions. In abyssal species, greater numbers of chloride and neuroendocrine cells are involved in the movement of water and electrolytes. Neuroendocrine cells possess oxygen receptors which mediate the cardiovascular and ventilatory response to oxygen deficiency, as reported in teleost species. Besides, NO contributes through nervous stimulation to the regulation of vascular tone and blood circulation in the gill.  相似文献   

11.
The circulation of the gills has been studied in the perch, trout and eel combining the conventional histological methods and casting techniques. The existence of two blood pathways in each gill arch was confirmed. 1 — An arterio-arterial pathway assuming the respiratory function. It includes the afferent branchial artery and in each primary lamella the afferent primary artery, the secondary lamellae capillaries and the primary and branchial efferent arteries. 2 — An arterio-venous pathway arising from both the branchial artery, in the gill arch, and the primary arteries in each primary lamella. This pathway includes the central venous sinus of the primary lamella, several small veins and is finally connected with the branchial veins. 3 — The lack of connections between afferent primary arteries and cvs in the trout and the perch makes impossible a direct blood flow from the afferent to the efferent artery (shunt). In the eel connections between cvs and both afferent and efferent arteries do not mean that a shunt is operating according to the pressure gradient.  相似文献   

12.
Summary In order to understand the blood flow patterns and their regulation in the gills and pulmonary artery ofAmbystoma tigrinum, the vascular resistance and vasoactivity of the two major branchial perfusion pathways and a vascular plexus in the pulmonary artery were investigated using an isolated-tissue perfusion method. Acetylcholine and epinephrine were both pressor agents in all three vascular segments. Angiotensin II also constricted the branchial respiratory vasculature. Norephinephrine was primarily a vasodilator in the branchial respiratory vasculature, however, it had no effect on the shunt vessels of the gill or the pulmonary arterial plexus. Both gill circulations were insensitive to alterations in CO2 and pH. Anoxia produced a slight vasodilation of the branchial respiratory vessels but had no effect on the shunt vasculature. Mild hypoxia had no effect on either branchial circulations. The results suggest that: (1) blood flow through the respiratory section of the gill may vary between 8 and 47% of total gill flow, (2) the major perfusion pathway to the lung is probably from the efferent artery of the third gill through the ductus arteriosus and then into the pulmonary artery, (3) O2, CO2 and pH exert no local control of branchial perfusion, (4) both cholinergic and adrenergic regulation of branchial and proximal pulmonary arterial vascular resistance is possible, (5) a rise in circulating norepinephrine should increase blood flow to the respiratory section of the gill.Abbreviations AII angiotensin II - ACh acetylcholine - EPi epinephrine - NE norepinephrine  相似文献   

13.
Although the branchial and cardiovascular effects of serotonin (5-hydroxytryptamine) have only partially been characterized, a physiological role for serotonin in the cardiorespiratory responses of fish to environmental changes such as reduced Ph has been suggested. Therefore, we have characterized and compared the effects of serotonin and a rapid reduction of Ph in the ambient water (from pH 8.8 to pH 4.0) on ventral and dorsal aortic blood pressures, heart rate, cardiac output, and arterial pH in rainbow trout, Onchorhynchus mykiss. In addition, the circulation in the branchial microvasculature was observed using in vivo epi-illumination microscopy. The fall in water Ph and injection of serotonin (100 nmol/kg) both increased the branchial resistance and reduced the efferent filamental artery (EFA) blood velocity. Nevertheless, quantitatively, the responses to the two stimuli were different. Although acid exposure caused a much more profound increase in branchial resistance compared with serotonin, the blood flow in the observable distal portion of the EFA was only reduced by 60% in acid water, while it stopped with serotonin. Regardless of the marked branchial resistance elevation, a constriction of the efferent filamental vasculature could not be seen during acid exposure, as occasionally was the case with serotonin. While methysergide completely abolished the serotonin-induced branchial events, it only modestly suppressed the acid-induced reduction of EFA blood velocity. In contrast, all of the systemic changes induced by serotonin and acidic water were insensitive to methysergide. In conclusion, acidic water and injected serotonin elevate the branchial resistance, but the involvement of a serotonergic component in the acidic response appears negligible.  相似文献   

14.
The gills of the European eel, Anguilla unguilla L. were analysed morphometrically. Fresh (unfixed) gills and resin-replica casts of the branchial vascular system were examined. The total gill surface area was found to be proportional to (body mas) 0-715 for fish of between 60 and 1 160 g. This relationship between gill surfxe area and body mass was maintained irrespective of a reduction in body mass produced by fasting. Vessel dimensions were obtained from the vascular casts. Calculations made using these values suggest that the major sites of gill vascular resistance lie at the level of the afferent lamellar arterioles and the secondary lamellae.  相似文献   

15.
The presence of adrenergic innervation was investigated in four different vascular segments of the neotenic tiger salamander, Ambystoma tigrinum, by histofluorescent staining for catecholamines. The segments were the respiratory section of the gill, the branchial shunt vessels, a vascular plexus in the pulmonary artery, and the dorsal aorta. No adrenergic fibers were detected in the respiratory section of the gill or the pulmonary arterial plexus. In contrast, the branchial shunt vessels contained both adrenergic varicosities and catecholamine-containing cell bodies. These cells resemble Type I cells of the mammalian carotid body and amphibian carotid labyrinth. Adrenergic innervation of the dorsal aorta was sparse and restricted to the adventitia. The results suggest that adrenergic nerves may directly regulate blood flow in the gill, and thus gas exchange, by controlling vascular resistance of the branchial shunts. The contractile state of the dorsal aorta may also be under adrenergic control. In addition, it is suggested that the adrenergic cells of the branchial shunts may serve a receptor function in being sensitive to arterial blood gases.  相似文献   

16.
This study examines the functional gill morphology of the shortfin mako, Isurus oxyrinchus, to determine the extent to which its gill structure is convergent with that of tunas for specializations required to increase gas exchange and withstand the forceful branchial flow induced by ram ventilation. Mako gill structure is also compared to that of the blue shark, Prionace glauca, an epipelagic species with lower metabolic requirements and a reduced dependence on fast, continuous swimming to ventilate the gills. The gill surface area of the mako is about one‐half that of a comparably sized tuna, but more than twice that of the blue shark and other nonlamnid shark species. Mako gills are also distinguished from those of other sharks by shorter diffusion distances and a more fully developed diagonal blood‐flow pattern through the gill lamellae, which is similar to that found in tunas. Although the mako lacks the filament and lamellar fusions of tunas and other ram‐ventilating teleosts, its gill filaments are stiffened by the elasmobranch interbranchial septum, and the lamellae appear to be stabilized by one to two vascular sacs that protrude from the lamellar surface and abut sacs of adjacent lamellae. Vasoactive agents and changes in vascular pressure potentially influence sac size, consequently effecting lamellar rigidity and both the volume and speed of water through the interlamellar channels. However, vascular sacs also occur in the blue shark, and no other structural elements of the mako gill appear specialized for ram ventilation. Rather, the basic elasmobranch gill design and pattern of branchial circulation are both conserved. Despite specializations that increase mako gill area and efficacy relative to other sharks, the basic features of the elasmobranch gill design appear to have limited selection for a larger gill surface area, and this may ultimately constrain mako aerobic performance in comparison to tunas. J. Morphol. 271:937–948, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
We have modeled steady, three-dimensional flow with a no-slip boundary condition in cylindrical and conical oral cavities possessing vertical or slanted branchial slits. These numerical simulations illustrate the transport of food particles toward the esophagus, as well as the velocity profiles of water exiting the oral cavity via the branchial slits. The maximum and average velocities are highest for flow exiting the most posterior branchial slit. The highest volume flow rates also occur in the most posterior slit for the cylindrical simulations, but occur in the most anterior slit for the conical simulations. Along the midline, there is a pronounced bilaterally symmetrical vortex in the posterodorsal region of the cylindrical and conical oral cavities and a second bilaterally symmetrical vortex in the posteroventral region of the cylinder. Particles entrained in the vortices will recirculate in the posterior oral cavity, increasing the probability of encounter with sticky, mucus-covered surfaces such as the oral roof, gill arches, or gill rakers. The posterodorsal vortex could serve to concentrate particles near the entrances of the epibranchial organs. The ventral vortex could be involved in sequestering dense inorganic particles that sink toward the floor of the oral cavity. All vortices are absent in the conical simulation with vertical branchial slits, indicating that the slanted branchial slits between the gill arches are responsible for the formation of the vortex in the conical oral cavity. Experiments using in vivo flow visualization techniques are needed to determine whether ram suspension feeders, pump suspension feeders, and non-suspension-feeding fishes possess vortices in the posterior oral cavity that contribute to particle transport, food particle encounter with sticky surfaces, and inorganic particle rejection.  相似文献   

18.
Acute exposure of rainbow trout (Salmo gairdneri) to low external calcium (25 microM) caused an immediate but transient increase in plasma epinephrine concentration that may have been related to a concomitant depression of blood pH. Intra-arterial infusion of epinephrine at normal ambient calcium levels (0.35 mM) for 4 h caused circulating levels of epinephrine to rise from 2.9 X 10(-9) to 8.0 X 10(-8) M but did not affect norepinephrine levels, or branchial unidirectional calcium fluxes. Active (ATP-dependent) calcium transport across basolateral plasma membranes prepared from gill epithelial cells was not affected by pretreatment of fish with epinephrine or by direct application of epinephrine or cAMP, in vitro. Epinephrine infusion elevated urine flow rate, decreased urine pH, and increased urine phosphate levels significantly. Net renal calcium efflux increased significantly as a result of the increased urine flow rate. It is concluded that epinephrine does not stimulate branchial calcium uptake or renal conservation of calcium in rainbow trout at normal external calcium levels and therefore we cautiously suggest that epinephrine is unlikely to be involved in calcium balance during periods of exposure to low external calcium. Instead, epinephrine may play a role in compensating the acid-base disturbances and the increased branchial water influx that are associated with exposure to low ambient calcium.  相似文献   

19.
The primary function of fish skin is to act as a barrier. It provides protection against physical damage and assists with the maintenance of homoeostasis by minimising exchange between the animal and the environment. However in some fish, the skin may play a more active physiological role. This is particularly true in species that inhabit specialised environmental niches (e.g. amphibious and air-breathing fish such as the lungfish), those with physiological characteristics that may subvert the need for the integument as a barrier (e.g. the osmoconforming hagfish), and/or fish with anatomical modifications of the epidermis (e.g. reduced epithelial thickness). Using examples from different fish groups (e.g. hagfishes, elasmobranchs and teleosts), the importance of fish skin as a transport epithelium for gases, ions, nitrogenous waste products, and nutrients was reviewed. The role of the skin in larval fish was also examined, with early life stages often utilising the skin as a surrogate gill, prior to the development of a functional branchial epithelium.  相似文献   

20.
This study investigated whether urea transport mechanisms were present in the gills of the ammoniotelic plainfin midshipman (Porichthys notatus), similar to those recently documented in its ureotelic relative (family Batrachoididae), the gulf toadfish (Opsanus beta). Midshipmen were fitted with internal urinary and caudal artery catheters for repetitive sampling of urine and blood in experiments and radiolabeled urea analogues ([(14)C]-thiourea and [(14)C]-acetamide) were used to evaluate the handling of these substances. Isosmotically balanced infusions of urea were used to raise plasma and urine urea concentrations to levels surpassing physiological levels by 8.5-fold and 6.4-fold, respectively. Despite these high urea levels, there was no observable transport maximum in either renal or branchial urea excretion rate, a result mirrored by the total uptake of fish exposed to a range of environmental urea concentrations. Permeability to urea appeared to be symmetrical in the two directions. At comparable plasma concentrations the branchial clearance rate of acetamide was 74% that of urea while branchial clearance rate of thiourea was 55% that of urea. For influx, the comparable values were 60% and 36%, indicating the same pattern. In contrast, the secretion clearance rate of acetamide by the kidney was 56% that of urea while the rate of thiourea secretion clearance was 137% greater than that of urea, with both urea and thiourea being more concentrated in the urine than in the plasma. In addition, the secretion clearance rates of thiourea and urea were significantly greater than those of water and Cl(-), whereas acetamide, water and Cl(-) were found equally in the plasma and urine, appearing to passively equilibrate between the two fluids. Based on our findings, there appear to be two distinct transport mechanisms involved in urea excretion in the plainfin midshipmen, one in the gill (a facilitated diffusion type transporter) and one in the kidney (an active transport mechanism), each of which does not saturate even at plasma urea concentrations that greatly exceed physiological levels. These transporters appear to be similar to those in the midshipman's ureotelic relative, the gulf toadfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号