首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The presence of binding sites for [3H]leukotriene (LT) C4 in bovine corpora lutea of pregnancy was investigated with quantitative light microscopic autoradiography. Silver grains were found over small (15-20 microns) and large (20-50 microns) luteal cells and arteriolar smooth muscle. Vascular endothelial cells, erythrocytes in arteriolar lumen, and fibroblasts, on the other hand, contained very few or no net grains. The grain distribution over luteal cells and arteriolar smooth muscle was reduced (p less than 0.001) after coincubation with excess unlabeled LTC4 but not with excess unlabeled LTA4, LTB4, LTD4, LTE4, prostaglandin (PG)E2, PGF2 alpha or PGI2. The large luteal cells contained 16.1 net grains per cell, which was 6.4 and 7.0 times the number of specific grains as in small luteal and arteriolar smooth muscle cells, respectively (p less than 0.001). When the net grains were corrected for cell area differences, large luteal cells and arteriole smooth muscle cells contained a similar number of grains-which was two times as many as those found in small luteal cells. These findings suggest that LTC4 can potentially regulate functions of not only luteal cells but also luteal vasculature.  相似文献   

3.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

4.
5.
Eicosanoids synthesized within corpus luteum are presumed to regulate luteal function in women. However, the potential cellular source(s) of the eicosanoids, whether small and large luteal cells differ in eicosanoid synthesis and whether eicosanoids other than prostaglandin (PG)E2, PGF2 alpha and 6-keto-PGI1 alpha can be synthesized, have not been investigated. The present immunocytochemical studies were undertaken to answer these questions using mono and polyclonal antibodies to several enzymes in arachidonic acid metabolism by cyclooxygenase and lipoxygenase pathways. Human corpora lutea from early (n = 5), mid (n = 6) and late (n = 3) luteal phases were specifically immunostained for all the enzymes. All the enzymes were present in small and large luteal cells as well as in non luteal cells. However, small luteal cells contained more immunoreactive 5-lipoxygenase, PGD2 and PGF2 alpha synthases; large luteal cells contained more TXA2 synthase and 12-lipoxygenase; small and large luteal cells contained similar amounts of cyclooxygenase and PGI2 synthase. In all the cells, immunoreactive PGD2, PGI2 and TXA2 synthases increased from early to mid luteal phase and then declined in late luteal phase. Cyclooxygenase, 5- and 12-lipoxygenases and PGF2 alpha synthase, on the other hand, increased from early to mid and mid to late luteal phases. Immunoreactive cyclooxygenase and 5- and 12-lipoxygenases were present primarily in rough endoplasmic reticulum (ER) and/or smooth ER and cytoplasm. Quite unexpectedly, all three enzymes were also found in nuclear membranes, condensed chromatin and especially at the perimeter of condensed chromatin. Dispersed chromatin contained very little or no immunoreactive enzyme. These results indicate that regulation of human luteal function by eicosanoids synthesized within the corpus luteum is complex involving perhaps a) small and large luteal as well as non luteal cells, b) eicosanoids which have not been previously considered to play a role in luteal function and c) coordinate regulation of more than one enzyme in the pathways of arachidonic acid metabolism.  相似文献   

6.
Dispersed ovine luteal cells collected on day 7 or 16 postestrus were incubated in vitro with hCG, PGE1 or PGE2 in the presence or absence of adenosine, dipyridamole (inhibitor of adenosine uptake) or PGF2 alpha in two separate experiments. Secretion of progesterone was increased by hCG, PGE1 or PGE2 when incubated with day 7 luteal cells (P less than or equal to 0.05) which was increased further when co-incubated with adenosine (P less than or equal to 0.05). PGF2 alpha alone or in the presence of hCG decreased (P less than or equal to 0.05) the secretion of progesterone by day 7 luteal cells, PGF2 alpha decreased post treatment cell viability with or without hCG (P less than or equal to 0.05) and adenosine reduced (P less than or equal to 0.05) the inhibitory effect of PGF2 alpha on hCG actions and luteal cell viability. Day 16 luteal cells were not functional based on jugular progesterone (P less than or equal to 0.05) and did not respond to hCG, PGE1, or PGE2 in the presence of adenosine or PGF2 alpha (P greater than or equal to 0.05). It is concluded that adenosine enhances the response of functional luteal cells to the luteotropins hCG, PGE1 or PGE2 and adenosine reduces the luteolytic response to PGF2 alpha by hCG-stimulated ovine luteal cells in vitro.  相似文献   

7.
Detailed analysis of the action of prostaglandins (PGs) on the corpus luteum in primate species is very limited. In this study we examined the response of the adenylate cyclase system to PGs in homogenates prepared from the corpus luteum of rhesus monkeys at midluteal phase of the menstrual cycle. The conversion of [alpha 32p] ATP to [32p] cyclic AMP (cAMP) was assessed in the absence (control activity; 50 microM GTP) and presence of various concentrations of seven PGs and arachidonic acid, either alone or in combination with 250 nM hCG. Cyclic AMP production increased up to three-fold in the presence of PGD2, PGE2, PGI2 or PGF2 alpha; however PGA2, PGB2, 13, 14-dihydro-15-keto PGE2 and arachidonic acid alone did not alter cAMP levels. In dose-response studies, adenylate cyclase was 10 and 100-fold more sensitive to PGD2 (Vmax at 1 X 10(-5) M) than to PGE2 or to PGI2 and PGF2 alpha, respectively. Activity in the presence of hCG plus either PGD2, PGE2, PGI2 or PGF2 alpha did not differ from that for hCG (or the PG) alone. In contrast, addition of PGA2 or arachidonate inhibited (p less than 0.05) hCG-stimulated cAMP production by 50 and 100 percent. We conclude that the gonadotropin-sensitive adenylate cyclase of the macaque corpus luteum is also modulated by several PGs. These factors may either mimic (e.g., PGD2, PGE2, PGI2) or suppress (PGA2) gonadotropin-stimulated cAMP production and possibly cAMP-mediated events in luteal cells.  相似文献   

8.
A cryostorage procedure was developed to provide ovine luteal cells throughout the period of seasonal anestrus. Corpora lutea obtained from midluteal phase, superovulated ewes were dispersed enzymatically. Some dispersed cells were fractionated into subpopulations by elutriation. Dimethylsulfoxide (7.5% final concentration) in Hanks' buffered saline was added to cells at 4 degrees C, and dispersed cell preparations were frozen in a programmable cell freezer and stored at -196 degrees C. After recovery from cryopreservation, cell viability and prostaglandin F2 alpha (PGF2 alpha) binding characteristics of thawed cells were not different from those of corresponding fresh cells. Additionally, thawed cells retained the capacity to attach to culture dishes and retained responsiveness of progesterone secretion to prostaglandin E2 (PGE2) and ovine luteinizing hormone (LH), although rates of progesterone secretion were attenuated in thawed compared with fresh cells. The cryopreservation procedure will prove useful to relieve constraints in utilization of ovine luteal cells arising from reproductive seasonality in sheep. Cells retrieved from cryostorage were evaluated by studying PGF2 alpha binding characteristics. From saturation analyses (increasing amounts of radiolabeled PGF2 alpha) of PGF2 alpha binding to unfractionated cells, we detected a single class of high affinity binding sites (Kd = 17.4 +/- 2.3 nM) in addition to the nonspecific binding component. Using displacement analyses (constant radiolabeled PGF2 alpha and increasing amounts of unlabeled PGF2 alpha) and unfractionated cells, we detected additional binding sites of lower affinity (Kd = 409 +/- 166 nM) as well as the nonspecific binding component. Small luteal cells obtained by elutriation, which were essentially devoid of large cell contamination, had only low affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cell composition of human and bovine corpora lutea (CL) from various reproductive states was investigated by computerized video-based interactive Bioquant image analysis system IV and by light microscope immunocytochemistry. Human and bovine CL contained more nonluteal cells than luteal cells. Human CL contained a lower number of luteal and a greater number of nonluteal cells than bovine CL. Regardless of the reproductive state, human CL contained more small luteal cells than large luteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. The average sizes of all the cells in human CL were smaller than in bovine CL. Human CL contained more vascular space than bovine CL during mid and late luteal phases. The number of luteal cells increased and nonluteal cells decreased from early to mid luteal phase, and then luteal cells decreased and nonluteal cells increased in late luteal phase and in degenerating human and bovine CL. While the change of number of small and large luteal cells first occurred from early to mid luteal phase in human CL, it did not take place until the late luteal phase in bovine CL. The average size of large luteal cells in humans and of small luteal cells in cattle did not change, whereas size of the other cells changed in different reproductive states in both human and bovine CL. The cell composition of term pregnancy human CL was similar to mid or late luteal phase, whereas the cell composition of early pregnancy bovine CL was similar to mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
In vitro luteinization of bovine granulosa (LGC) and theca (LTC) cells was achieved by culturing cells with forskolin (10 microM) and insulin (2 micrograms/ml) for 9 days. This treatment induced the presence of cytochrome P450scc and adrenodoxin in both cell types, but to substantially higher levels in LGC than in LTC. Forskolin dose-dependently stimulated the secretion of progesterone and cAMP after 3 h of incubation in both cell types although LGC were less sensitive to this stimulation than were LTC. Only LTC were responsive to LH, in accordance with their higher LH/hCG binding capacity. Both prostaglandin F2 alpha (PGF2 alpha) and phorbol 12-myristate 13-acetate (TPA) increased progesterone production during 3 h incubation of LGC and LTC, and treatment with staurosporine (a protein kinase C inhibitor) reversed this effect. Neither TPA nor PGF2 alpha alone affected cAMP levels but each acted synergistically with forskolin to increase cAMP accumulation. These results indicate that 1) elevated progesterone output from LGC is related to steroidogenic enzyme level; 2) bovine LH (up to 100 ng/ml) does not provoke a response in LGC due to their low LH/hCG binding capacity; 3) cAMP-protein kinase A and protein kinase C pathways are both involved in progesterone production by LGC and LTC, possibly by enhancing cholesterol transport.  相似文献   

12.
Basal and calcium ionophore (CaI)-influenced production of prostaglandins (PGs) by corpora lutea (CL) destined to be normal or short-lived were compared. Ovulation was induced in 24 lactating beef cows with human chorionic gonadotropin (hCG, 1000 IU) administered between 35 and 40 days postpartum. Ten cows received norgestomet implants for 9 days prior to induced ovulation (Normal CL) and 14 served as untreated controls (Subnormal CL). Five cows in each treatment were unilaterally ovariectomized on Day 6 (Day 0 = day of hCG administration) and CL were collected. Blood samples were collected daily through-out the experimental period from cows not ovariectomized. Plasma progesterone (P4) in ovary-intact animals indicated that short-lived CL were induced in 8/8 cows not pretreated with norgestomet, and normal luteal lifespan was observed in 4/5 implanted cows. Dispersed luteal cells were incubated for 8 h with 0, 0.05, 0.5, or 5 microM CaI (A23187). Incubation media were analyzed for P4, PGF2 alpha, 6-keto-PGF1 alpha (PGI), and PGE2. The weight, cell number, and basal or CaI-influenced production of P4 did not differ between Normal CL and Subnormal CL. Basal production of PGF2 alpha, PGI, and PGE2 was higher in Subnormal CL than in Normal CL (p less than 0.05). In response to 0.05 microM CaI, PGF2 alpha was stimulated in Subnormal CL (p less than 0.01), while PGI (p less than 0.05) and PGE2 (p less than 0.1) were increased in Normal CL. Production of PGs was reduced by 5 microM CaI in Subnormal CL (p less than 0.01), but not in Normal CL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Corpora lutea collected at 15, 30 and 60 min after prostaglandin F2 alpha (PGF2 alpha) treatment were compared to control corpora lutea at 60 min after saline treatment. There were decreases (P less than 0.05) in the relative percentages of cytoplasm occupied by granules in large luteal cells (LLC) by 30 min and in small luteal cells (SLC) by 60 min. Differences were not observed among the groups for lipid inclusions. Luteal progesterone was decreased at all post-PGF2 alpha treatment times when compared to 60-min controls (P less than 0.05). PGF2 alpha was then compared with prostaglandin F1 alpha (PGF1 alpha), prostaglandin E1 (PGE1), and 17-phenyl-18,19,20-trinor-prostaglandin F2 alpha (17-phenyl-PGF2 alpha) in 60-min trials with plasma progesterone and luteinizing hormone (LH) determined every 5 min. LH was not affected by these treatments. Like PGF2 alpha, 17-phenyl-PGF2 alpha induced a greater loss of granules from LLC then SLC. 17-phenyl-PGF2 alpha also induced an increase in the lipid content of LLC. Treatments with PGF2 alpha and 17-phenyl-PGF2 alpha were associated with decreased concentrations of luteal progesterone but PGF1 alpha and PGE1 were without effect on this variable. In contrast to PGF1 alpha, PGE1 increased both luteal progesterone and the area occupied by cytoplasmic granules. The latter effect was greater in LLC than SLC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Myometrium of various animal species makes a considerable amount of prostacyclin (PGI2) which is a potent myometrial and uterine vascular smooth muscle relaxing agent. This action of PGI2 is perhaps mediated by binding to specific receptors, which have never been demonstrated in uterine tissue of any animal species until very recently. The quantitative light microscopic autoradiographic approach used in the present studies demonstrated that while bovine myometrial smooth muscle and uterine vascular smooth muscle contained PGI2 specific binding sites, endometrial and perimetrial cells contained few or no binding sites. The number of binding sites in circular and elongated myometrial smooth muscle and in arteriolar smooth muscle were similar (P greater than 0.05). The PGI2 binding to the uterine cells was greatly reduced (P less than 0.001) following coincubation with excess unlabeled PGI2, but not with its stable metabolite, 6-keto PGF1 alpha, PGE2, PGF2 alpha and leukotriene C4 which bind to nonpregnant bovine uterine tissue, also had no effect of PGI2 binding. In conclusion, nonpregnant bovine uterine tissue contain specific PGI2 binding sites which may mediate its potent relaxing effect on myometrium and uterine vasculature.  相似文献   

15.
Luteal cells were obtained by digestion of luteal tissue of cyclic (day 12) and early pregnant (days 12, 20 and 30) pigs. Suspensions of the dispersed luteal cells (5 x 10(4) cells ml-1) were incubated for 2 h in minimum essential medium (MEM) alone (control) and MEM with different concentrations of prostaglandin F2 alpha (PGF2 alpha) and PGE2 (0.01, 0.1, 1, 10, 100 and 1000 ng ml-1) and luteinizing hormone (LH) 100 and 1000 ng ml-1, or with combinations of LH + PGF2 alpha and LH + PGE2. Net progesterone production was measured in the incubation media by direct radioimmunoassay. The overall response pattern of the luteal cells to exogenous hormones on day 12 of the oestrous cycle and pregnancy differed (P < 0.05) from treatment on day 20 and 30 of pregnancy. In general progesterone production was higher (P < 0.05) and the response to PGF2 alpha and PGE2 treatment was most obvious on day 12 of the oestrous cycle and pregnancy. Overall, PGF2 alpha stimulated progesterone production in a dose-dependent manner (P < 0.05). The response to PGE2 was of a quadratic nature (P < 0.05) in which the lowest and the highest doses of PGE2 were associated with a greater production of progesterone than were the intermediate doses. Treatment of luteal cells with PGF2 alpha + LH or PGE2 + LH caused overall inhibition (P < 0.05) of progesterone production compared with treatment with each hormone alone. This interaction was not affected by the dose of LH used. These findings indicate that PGF2 alpha and PGE2 are involved in the autocrine control of corpus luteum function.  相似文献   

16.
The present studies were conducted to determine the effects of gonadotropins (LH and hCG) and prostaglandin F2a (PGF2a) on the production of "second messengers" and progesterone synthesis in purified preparations of bovine small luteal cells. Corpora lutea were removed from heifers during the luteal phase of the normal estrous cycle. Small luteal cells were isolated by unit-gravity sedimentation and were 95-99% pure. LH provoked rapid and sustained increases in the levels of [3H]inositol mono-, bis-, and trisphosphates (IP, IP2, IP3, respectively), cAMP and progesterone in small luteal cells. LiCl (10 mM) enhanced inositol phosphate accumulation in response to LH but had no effect on LH-stimulated cAMP or progesterone accumulation. Time course studies revealed that LH-induced increases in IP3 and cAMP occurred simultaneously and preceded the increases in progesterone secretion. Similar dose-response relationships were observed for inositol phosphate and cAMP accumulation with maximal increases observed with 1-10 micrograms/ml of LH. Progesterone accumulation was maximal at 1-10 ng/ml of LH. LH (1 microgram/ml) and hCG (20 IU/ml) provoked similar increases in inositol phosphate, cAMP and progesterone accumulation in small luteal cells. 8-Bromo-cAMP (2.5 mM) and forskolin (1 microM) increased progesterone synthesis but did not increase inositol phosphate accumulation in 30 min incubations. PGF2a (1 microM) was more effective than LH (1 microgram/ml) at stimulating increases in inositol phosphate accumulation (4.4-fold vs 2.2-fold increase for PGF2a and LH, respectively). The combined effects of LH and PGF2a on accumulation of inositol phosphates were slightly greater than the effects of PGF2a alone. In 30 min incubations, PGF2a had no effect on cAMP accumulation and provoked small increases in progesterone secretion. Additionally, PGF2a treatment had no significant effect on LH-induced cAMP or progesterone accumulation in 30 min incubations of small luteal cells. These findings provide the first evidence that gonadotropins stimulate the cAMP and IP3-diacylglycerol transmembrane signalling systems in bovine small luteal cells. PGF2a stimulated phospholipase C activity in small cells but did not reduce LH-stimulated cAMP or progesterone accumulation. These results also demonstrate that induction of functional luteolysis in vitro requires more than the activation of the phospholipase C-IP3/calcium and -diacylglycerol/protein kinase C transmembrane signalling system.  相似文献   

17.
The second messengers mediating hormonal regulation of the corpus luteum are incompletely defined, particularly for the primary luteolytic hormone prostaglandin F2 alpha (PGF2 alpha). In this study, hormonally induced changes in free intracellular calcium concentrations were measured in individual small and large ovine luteal cells by using computer-assisted microscopic imaging of fura-2 fluorescence. This technique could readily detect transient increases in free calcium concentrations within both small and large luteal cells after treatment with 1 microM of the calcium ionophore, A23187. Treatment with PGF2 alpha (1 microM) caused a dramatic increase in free calcium concentrations in large (before = 73 +/- 2 nM; 2 min after PGF2 alpha = 370 +/- 21 nM; n = 33 cells) but not in small (before = 66 +/- 4 nM; 2 min after PGF2 alpha = 69 +/- 8 nM; n = 12 cells) luteal cells. The magnitude and timing of the calcium response was dose- and time-dependent. The PGF2 alpha-induced increase in free intracellular calcium is probably due to influx of extracellular calcium, since inclusion of inorganic calcium channel blockers (100 microM manganese or cobalt) attenuated the response to PGF2 alpha and removal of extracellular calcium eliminated the response. In contrast to PGF2 alpha, luteinizing hormone (LH) (100 ng/ml) caused no change in intracellular levels of free calcium in small or large luteal cells, even though this dose of LH stimulated (p less than 0.01) progesterone production by small luteal cells. Therefore, alterations in free calcium concentrations could be the intracellular second message mediating the luteolytic action of PGF2 alpha in the large ovine luteal cell.  相似文献   

18.
The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities.  相似文献   

19.
The biological effects of leukotriene (LT)B4 were compared, on a molar basis, with those of LTC4, LTD4, LTE4, 5-hydroxyeicosatetraenoic acid (5-HETE), PGD2, PGE1, PGE2, PGF2 alpha, PGI2, 6-oxo-PGF1 alpha, bradykinin (BK) and angiotensin II (Ang II) on isolated strips of guinea-pig lung parenchyma (GPP) and ileum smooth muscle (GPISM) superfused in series. LTB4 was similar to LTC4 and LTD4 on GPP, in relation to potency and contractions induced, but differed from LTE4 in being ten times more active and causing contractions of a much shorter duration of action on this tissue. However, unlike the other LTs, LTB4 produced contractions which were resistant to FPL 55712 (1.9 microM) and, when given repeatedly, caused tachyphylaxis in GPP. LTB4 was considerably more active on GPP than the other substances investigated. Further, PGD2, PGF2 alpha and PGI2 contracted GPP, the order of potency being PGD2 greater than PGF2 alpha approximately equal to PGI2, whereas PGE1 and PGE2 relaxed this tissue. In contrast to all other agonists tested which contracted GPISM, LTD4 displaying the highest activity, LTB4 was inactive on this tissue. 5-HETE and 6-oxo-PGF1 alpha were inactive on both GPP and GPISM. On the basis of differential effects of LTB4 on GPP and GPISM, this assay represents a simple and selective means to distinguish LTB4-like materials from other naturally-occurring substances likely to be generated in inflammatory fluids.  相似文献   

20.
The present experiments were conducted to test whether the ratio of PGE2:PGF2alpha affects steroid secretion by porcine luteal cells. We examined the effect of separate and combined treatment with PGE2 and PGF2alpha on progesterone and estradiol secretion. Luteal cells were collected at three different stages of the luteal phase (1-3 days after ovulation; 10-12 days after ovulation and 14-16 days after ovulation). PGE2 alone in a dose dependent manner increased progesterone production by cells collected from mature corpora lutea. On the other hand, PGF2alpha in a dose dependent manner decreased progesterone secretion by cells of the same origin. Progesterone secretion by cells isolated from mature and regressing corpora lutea and treated with both prostaglandins increased in comparison to PGF2alpha-treated cultures. However, in cells collected from regressing corpora lutea PGE2 and PGF2alpha in a ratio of 2:1 and 4:1 increased estradiol production when compared to control and both ratios increased estradiol secretion in comparison to PGF2alpha-treated cells. These data 1) confirm the luteotropic effect of PGE2 and the luteolytic effect of PGF2alpha; 2) demonstrate that when the ratio of PGE2 to PGF2alpha changed from 1:1 to 2:1 or 4:1 cells were protected against the inhibitory effects of PGF2alpha on progesterone secretion by cells collected during the mid- and late luteal phase; and 3) suggest that elevated estradiol production by luteal cells, isolated during late luteal phase, under the influence of increased doses of PGE2 may serve as an additional source of estradiol to blastocysts, during early pregnancy in the pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号