首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
C5L2 is a functional receptor for acylation-stimulating protein   总被引:9,自引:0,他引:9  
C5L2 binds acylation-stimulating protein (ASP) with high affinity and is expressed in ASP-responsive cells. Functionality of C5L2 has not yet been demonstrated. Here we show that C5L2 is expressed in human subcutaneous and omental adipose tissue in both preadipocytes and adipocytes. In mice, C5L2 is expressed in all adipose tissues, at levels comparable with other tissues. Stable transfection of human C5L2 cDNA into HEK293 cells results in ASP stimulation of triglyceride synthesis (TGS) (193 +/- 33%, 5 microM ASP, p < 0.001, where basal = 100%) and glucose transport (168 +/- 21%, 10 microM ASP, p < 0.001). C3a similarly stimulates TGS (163 +/- 12%, p < 0.001), but C5a and C5a des-Arg have no effect. The ASP mechanism is to increase Vmax of glucose transport (149%) and triglyceride (TG) synthesis activity (165%) through increased diacylglycerolacyltransferase activity (200%). Antisense oligonucleotide down-regulation of C5L2 in human skin fibroblasts decreases cell surface C5L2 (down to 54 +/- 4% of control, p < 0.001, comparable with nonimmune background). ASP response is coordinately lost (basal TGS = 14.6 +/- 1.6, with ASP = 21.0 +/- 1.4 (144%), with ASP + oligonucleotides = 11.0 +/- 0.8 pmol of TG/mg of cell protein, p < 0.001). In mouse 3T3-L1 preadipocytes, antisense oligonucleotides decrease C5L2 expression to 69.5 +/- 0.5% of control, p < 0.001 (comparable with nonimmune) with a loss of ASP stimulation (basal TGS = 22.4 +/- 2.9, with ASP = 39.6 +/- 8.8 (177%), with ASP + oligonucleotides = 25.3 +/- 3.0 pmol of TG/mg of cell protein, p < 0.001). C5L2 down-regulation and decreased ASP response correlate (r = 0.761, p < 0.0001 for HSF and r = 0.451, p < 0.05 for 3T3-L1). In HEK-hC5L2 expressing fluorescently tagged beta-arrestin, ASP induced beta-arrestin translocation to the plasma membrane and formation of endocytic complexes concurrently with increased phosphorylation of C5L2. This is the first demonstration that C5L2 is a functional receptor, mediating ASP triglyceride stimulation.  相似文献   

2.
During complement activation the pro-inflammatory anaphylatoxins C3a and C5a are generated, which interact with the C3a receptor and C5a receptor (CD88), respectively. C5a and its degradation product C5a-des-Arg(74) also bind to the C5a receptor-like 2 (C5L2). C3a and C3a-des-Arg(77), also called acylation-stimulating protein, augment triglyceride synthesis and glucose uptake in adipocytes and skin fibroblasts. Based on data obtained using transfected HEK293 and RBL cells, C5L2 is additionally proposed as a functional receptor for C3a and C3a-des-Arg(77). Here we use (125)I-ligand binding assays and flow cytometry with fluorescently labeled ligands to demonstrate that neither C3a nor C3a-des-Arg(77) binds to C5L2. C5L2 expression and its regulation are investigated on various cell lines by a novel C5L2-restricted binding assay and quantitative real time PCR. Dibutyryl cAMP and interferon-gamma induce up-regulation of this receptor on myeloblastic cell lines (U937 and HL-60), whereas tumor necrosis factor-alpha (TNF-alpha) has no effect. In contrast, epithelial HeLa cells are found to constitutively express C5L2 but not the C5a receptor. In HeLa cells, interferon-gamma and TNF-alpha drastically reduce C5L2 expression. No C5a-dependent Ca(2+) signaling is observed even in these cells endogenously expressing C5L2. Taken together, C5L2 is not a receptor for C3a or C3a-des-Arg(77). Thus, this receptor is unlikely to be directly involved in lipid metabolism. Instead, the identification of stimuli modifying C5L2 expression indicates that C5L2 is a highly regulated scavenger receptor for C5a and C5a-des-Arg(74).  相似文献   

3.
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages.BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2–C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser473) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes.C5L2–C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2–C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.  相似文献   

4.
Smoking is one of the main risk factors for cardiovascular disease. The smokers exhibit different degrees of insulin resistance. The pathway of acylation-stimulating protein (ASP) and its specific receptor, C5a-like receptor 2 (C5L2), involves in the effective clearance of plasma glucose and triglyceride. ASP and insulin play similar but distinct roles in adipose metabolism. High level of ASP is indicative of ASP resistance and insulin resistance. Low level of ASP indicates increased insulin sensitivity. We proposed that the abnormality of ASP-C5L2 pathway contributes to insulin resistance in smokers.  相似文献   

5.
C5L2, a nonsignaling C5A binding protein   总被引:11,自引:0,他引:11  
  相似文献   

6.
Acylation-stimulating protein (C3adesArg/ASP) is an adipokine that acts on its receptor C5L2 to stimulate triglyceride (TG) synthesis in adipose tissue. The present study investigated ASP levels in mouse models of obesity and leanness and the effect of ASP deficiency in C3 knockout (C3KO) mice on adipose tissue morphology. Plasma ASP levels in wild-type (WT) mice correlated positively with plasma nonesterified fatty acids (NEFA) (R = 0.664, P < 0.001) and total cholesterol (R = 0.515, P < 0.001). Plasma ASP was increased by 85% in obese ob/ob leptin-deficient mice and decreased in lean diacylglycerol acyltransferase 1 (DGAT1) KO mice (-54%) and C/EBPalpha(beta/beta) transgenic mice (-70%) compared with WT. Mice lacking alternative complement factor B or adipsin (FBKO or ADKO), required for ASP production, were also ASP deficient. Both FBKO and C3KO mice had delayed postprandial TG and NEFA clearance on low-fat (LF) and high-fat (HF) diets, suggesting that lack of ASP, not C3, drives the metabolic phenotype. Adipocyte size distribution in C3KO mice was polarized (increased number of both small and large cells), with decreased adipsin expression (-33% gonadal HF), DGAT1 expression (-31% to -50%) and DGAT activity (-41%). Overall, a reduction/deficiency in ASP is associated with an antiadipogenic state and ASP may provide a target for controlling fat storage.  相似文献   

7.
Type 2 diabetes is characterized by insulin resistance and β-cell dysfunction. The pathway of acylation-stimulating protein (ASP) and its specific receptor, C5a-like receptor 2 (C5L2), involves in the effective clearance of plasma glucose and free fat acid. Abnormal ASP-C5L2 pathway may induce insulin resistance, as well as cause hyperglycemia and elevated plasma free fat acid. High levels of plasma glucose and free fat acid induce β-cell apoptosis and dysfunction. We proposed that the abnormality of ASP-C5L2 pathway contributes to progression of type 2 diabetes.  相似文献   

8.
The substantial variations in the responses of cells to the anaphylatoxin C5a and its desarginated form, C5adR(74), suggest that more than one type of cell surface receptor for these ligands might exist. However, only a single receptor for C5a and C5adR(74), CD88, has been characterized to date. Here we report that the orphan receptor C5L2/gpr77, which shares 35% amino acid identity with CD88, binds C5a with high affinity but has a 10-fold higher affinity for C5adR(74) than CD88. C5L2 also has a moderate affinity for anaphylatoxin C3a, but cross-competition studies suggest that C3a binds to a distinct site from C5a. C4a was able to displace C3a, suggesting that C5L2, like the C3a receptor, may have a low binding affinity for this anaphylatoxin. Unlike CD88 and C3a receptor, C5L2 transfected into RBL-2H3 cells does not support degranulation or increases in intracellular [Ca(2+)] and is not rapidly internalized in response to ligand binding. However, ligation of C5L2 by anaphylatoxin did potentiate the degranulation response to cross-linkage of the high affinity IgE receptor by a pertussis toxin-sensitive mechanism. These results suggest that C5L2 is an anaphylatoxin-binding protein with unique ligand binding and signaling properties.  相似文献   

9.
C5 convertase of the classical complement pathway is a protein complex consisting of C4b, C2a, and C3b. Within this complex C3b binds to C4b via an ester linkage. We now present evidence that the covalent C3b-binding site on human C4b is Ser at position 1217 of C4. We also show that formation of the covalently linked C4b.C3b complex occurs in the mouse complement system and that the C3b-binding site on mouse C4b is Ser at position 1213 which is homologous to Ser-1217 of human C4. Therefore, covalent binding of C3b to a single specific site on C4b within the classical pathway C5 convertase is likely a common phenomenon in the mammalian complement system. Specific noncovalent association of metastable C3b with C4b would occur first, leading to reaction of the thioester with a specific hydroxy group. This is supported by two lines of experimental evidence, one which shows that a mutant C4 that does not make a covalent linkage with C3b is still capable of forming C5 convertase and a second in which the C4b.C3b complex has been demonstrated by cross-linking erythrocytes bearing this C5 convertase.  相似文献   

10.
Inal JM  Sim RB 《FEBS letters》2000,470(2):131-134
Human complement regulatory (also called inhibitory) proteins control misdirected attack of complement against autologous cells. Trypanosome and schistosome parasites which survive in the host vascular system also possess regulators of human complement. We have shown Sh-TOR, a protein with three predicted transmembrane domains, located on the Schistosoma parasite surface, to be a novel complement regulatory receptor. The N-terminal extracellular domain, Sh-TOR-ed1, binds the complement protein C2 from human serum and specifically interacts with the C2a fragment. As a result Sh-TOR-ed1 pre-incubated with C2 inhibits classical pathway (CP)-mediated haemolysis of sheep erythrocytes in a dose-dependent manner. In CP-mediated complement activation, C2 normally binds to C4b to form the CP C3 convertase and Sh-TOR-ed1 has short regions of sequence identity with a segment of human C4b. We propose the more appropriate name for TOR of CRIT (complement C2 receptor inhibitory trispanning).  相似文献   

11.
In the past few years, there has been increasing interest in the production and physiological role of acylation-stimulating protein (ASP), identical to C3adesArg, a product of the alternative complement pathway generated through C3 cleavage. Recent studies in C3 (-/-) mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage. The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into adipocytes, then cultured in different media such as serum-free (SF), Dulbecco's modified Eagle's medium (DMEM)/F12 + 10% fetal calf serum (FBS), and at varying concentrations of chylomicrons and insulin + chylomicrons up to 48 h. ASP production in SF and DMEM/F12 + 10% FBS was compared. Chylomicrons stimulated ASP production in a concentration- and time-dependent manner. By contrast, chylomicron treatment had no effect on the production of C3, the precursor protein of ASP, which was constant over 48 h. Addition of insulin (100 nM) to a low-dose of chylomicrons (100 μg TG/ml) significantly increased ASP production compared with chylomicrons alone at 48 h (P < 0.001). Furthermore, addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P < 0.05, P < 0.001, respectively). Overall, the proportion of ASP to C3 remained constant, indicating no change in the ratio of C3 cleaved to generate ASP. This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay. The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response, and provides a strategy for further studies on ASP production and function.  相似文献   

12.
Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. The aims were (i) to evaluate ASP response under insulin-resistant conditions and (ii) to identify mechanisms of ASP resistance using 3T3-L1 adipocytes and preadipocytes. Overnight incubation with palmitate (PAL) or oleate (OLE) induced dose-dependent inhibition of ASP-stimulated glucose transport in adipocytes (198 +/- 18% +ASP, 100 +/- 4% basal, 131 +/- 14% + ASP + 1 mmol/L PAL) and preadipocytes (287 +/- 21% + ASP, 100 +/- 4% basal, 109 +/- 13% + ASP + 1 mmol/L PAL). In adipocytes, dose-dependent maximal C5L2 mRNA decreases were -41 +/- 15% and -82 +/- 2%, with decreased cell-surface C5L2 of -55 +/- 12% and -39 +/- 9% (1 mmol/L PAL and OLE, respectively) with no change in preadipocytes. Adipocytes treated with PAL or OLE evidenced inhibition of ASP stimulation of G proteins: Gbeta (-50%), Galphaq/11 (-50%) and protein kinase C: PKCalpha-P (-52%), PKCzeta-P (-43%). Fatty acid-induced ASP resistance via C5L2 may contribute to altered adipose tissue function and obesity/insulin resistance phenotype in humans.  相似文献   

13.
The complement anaphylatoxin C5a is a proinflammatory component of host defense that functions through two identified receptors, C5a receptor (C5aR) and C5L2. C5aR is a classical G protein-coupled receptor, whereas C5L2 is structurally homologous but deficient in G protein coupling. In human neutrophils, we show C5L2 is predominantly intracellular, whereas C5aR is expressed on the plasma membrane. Confocal analysis shows internalized C5aR following ligand binding is co-localized with both C5L2 and β-arrestin. Antibody blockade of C5L2 results in a dramatic increase in C5a-mediated chemotaxis and ERK1/2 phosphorylation but does not alter C5a-mediated calcium mobilization, supporting its role in modulation of the β-arrestin pathway. Association of C5L2 with β-arrestin is confirmed by cellular co-immunoprecipitation assays. C5L2 blockade also has no effect on ligand uptake or C5aR endocytosis in human polymorphonuclear leukocytes, distinguishing its role from that of a rapid recycling or scavenging receptor in this cell type. This is thus the first example of a naturally occurring seven-transmembrane segment receptor that is both obligately uncoupled from G proteins and a negative modulator of signal transduction through the β-arrestin pathway. Physiologically, these properties provide the possibility for additional fine-tuning of host defense.  相似文献   

14.
The D(2) dopamine receptor has been expressed in Sf21 insect cells together with the G proteins G(o) and G(i2), using the baculovirus system. Expression levels of receptor and G protein (alpha, beta, and gamma subunits) in the two preparations were similar as shown by binding of [(3)H]spiperone and quantitative Western blot, respectively. For several agonists, binding data were fitted best by a two-binding site model in either preparation, showing interaction of expressed receptor and G protein. For some agonists, binding to the higher affinity site was of higher affinity in D(2)/G(o) than in the D(2)/G(i2) preparation. Some agonists exhibited binding data that were best fitted by a two-binding site model in D(2)/G(o) and a one-binding site model in D(2)/G(i2). Therefore, receptor/G protein interaction seemed to be stronger in the D(2)/G(o) preparation. Agonist stimulation of [(35)S]GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) binding in the two preparations also gave evidence for higher affinity D(2)/G(o) interaction. In the D(2)/G(o) preparation, agonist stimulation of [(35)S]GTP gamma S binding occurred at higher potency for several agonists, and a higher stimulation (relative to dopamine) was achieved in D(2)/G(o) compared with D(2)/G(i2). Some agonists were able to stimulate [(35)S]GTP gamma S binding in the D(2)/G(o) preparation but not in D(2)/G(i2). The extent of D(2) receptor selectivity for G(o) over G(i2) is therefore dependent on the agonist used, and thus agonists may stabilize different conformations of the receptor with different abilities to couple to and activate G proteins.  相似文献   

15.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

16.
Neisseria gonorrhoeae, the causative agent of gonorrhea, is a natural infection only in humans. The resistance of N. gonorrhoeae to normal human serum killing correlates with porin (Por)-mediated binding to the complement inhibitor, C4b-binding protein (C4BP). The entire binding site for both porin molecules resides within complement control protein domain 1 (CCP1) of C4BP. Only human and chimpanzee C4BPs bind to Por1B-bearing gonococci, whereas only human C4BP binds to Por1A strains. We have now used these species-specific differences in C4BP binding to gonococci to map the porin binding sites on CCP1 of C4BP. A comparison between human and chimpanzee or rhesus C4BP CCP1 revealed differences at 4 and 12 amino acid positions, respectively. These amino acids were targeted in the construction of 13 recombinant human mutant C4BPs. Overall, amino acids T43, T45, and K24 individually and A12, M14, R22, and L34 together were important for binding to Por1A strains. Altering D15 (found in man) to N15 (found in rhesus) introduced a glycosylation site that blocked binding to Por1A gonococci. C4BP binding to Por1B strains required K24 and was partially shielded by additional glycosylation in the D15N mutant. Only those recombinant mutant C4BPs that bound to bacteria rescued them from 100% killing by rhesus serum, thereby providing a functional correlate for the binding studies and highlighting C4BP function in gonococcal serum resistance.  相似文献   

17.
Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. In human studies, ASP is increased in insulin resistant states such as obesity, diabetes, polycystic ovary syndrome and late pregnancy (the latter two associated with altered sex hormones). The aims were (i) to evaluate ASP response and C5L2 expression following treatment with sex steroid hormones and (ii) to identify mechanisms of ASP resistance using 3T3-L1 adipocytes and preadipocytes. Overnight incubation with physiological progesterone (PROG) concentrations induced dose-dependent inhibition of ASP-stimulated glucose transport in adipocytes (188 +/- 11% +ASP, 100 +/- 4% control, 129 +/- 18% to 85 +/- 7% [ASP + PROG 10(-8) to 10(-6) M] and preadipocytes (263 +/- 18% +ASP, 100 +/- 3% control, 170 +/- 11% to 167 +/- 4% [ASP + PROG 10(-8) to 10(-6) M]), while estradiol and testosterone (TEST) were effective only at the highest concentration (10(-6) M). In adipocytes, dose-dependent maximal C5L2 mRNA decreases were 39-75% (P = 0.003), with decreased cell-surface C5L2 of -22% and -27% (10(-6) M PROG and TEST, respectively) with no change in preadipocytes. Adipocytes treated with PROG displayed decreases in G proteins: Gbeta (-55%), Galphaq/11 (-56%) as well as complete inhibition of ASP stimulation. PROG significantly decreased basal levels of phosphorylated PKCalpha (p-PKCalpha) while there was no change in p- PKCzeta. ASP increased p-PKCalpha and PKCzeta to 161% (P < 0.0.001) and 160% (P < 0.01), a stimulation effectively blocked by PROG (10(-8) and 10(-6) M) and TEST (10(-6) M). Sex steroid hormone-induced ASP resistance via C5L2 may contribute to altered adipose tissue function and insulin resistance phenotype in humans.  相似文献   

18.
Acylation-stimulating protein (ASP), a lipogenic hormone, stimulates triglyceride (TG) synthesis and glucose transport upon activation of C5L2, a G protein-coupled receptor. ASP-deficient mice have reduced adipose tissue mass due to increased energy expenditure despite increased food intake. The objective of this study was to evaluate the blocking of ASP-C5L2 interaction via neutralizing antibodies (anti-ASP and anti-C5L2-L1 against C5L2 extracellular loop 1). In vitro, anti-ASP and anti-C5L2-L1 blocked ASP binding to C5L2 and efficiently inhibited ASP stimulation of TG synthesis and glucose transport. In vivo, neither anti-ASP nor anti-C5L2-L1 altered body weight, adipose tissue mass, food intake, or hormone levels (insulin, leptin, and adiponectin), but they did induce a significant delay in TG clearance [P < 0.0001, 2-way repeated-measures (RM) ANOVA] and NEFA clearance (P < 0.0001, 2-way RM ANOVA) after a fat load. After treatment with either anti-ASP or anti-C5L2-L1 antibody there was no change in adipose tissue AMPK activity, but neutralizing antibodies decreased perirenal TG mass (-38.4% anti-ASP, -18.8% anti-C5L2, P < 0.01-0.001) and perirenal LPL activity (-75.6% anti-ASP, -72.5% anti-C5L2, P < 0.05). In liver, anti-C5L2-L1 decreased TG mass (-42.8%, P < 0.05), whereas anti-ASP increased AMPK activity (+34.6%, P < 0.001). In the muscle, anti-C5L2-L1 significantly increased TG mass (+128.0%, P < 0.05), LPL activity (+226.1%, P < 0.001), and AMPK activity (+71.1%, P < 0.01). In addition, anti-ASP increased LPL activity (+164.4, P < 0.05) and AMPK activity (+53.9%, P < 0.05) in muscle. ASP/C5L2-neutralizing antibodies effectively block ASP-C5L2 interaction, altering lipid distribution and energy utilization.  相似文献   

19.
Acylation-stimulating protein (ASP) and interaction with its receptor C5L2 influences adipocyte metabolism. We examined insulin resistance and differentiation-mediated regulation of C5L2 and the mechanistic impact on both C5L2 cell-surface protein and ligand binding to the receptor. C5L2 mRNA increased 8.7-fold with differentiation in 3T3-L1 cells (p < 0.0001) by day 9. In preadipocytes, insulin and dexamethasone increased C5L2 mRNA (1 micromol/L insulin resulted in a 2.6-fold increase, p < 0.01; 10 nmol/L dexamethasone resulted in a 17.9-fold increase, p < 0.01) and C5L2 cell-surface protein (100 nmol insulin resulted in a 2.7-fold increase, p < 0.001; 10 nmol/L dexamethasone resulted in a 2.8-fold increase, p < 0.001). In adipocytes, 100 nmol/L insulin increased C5L2 mRNA and ASP binding (respectively, 1.3-fold, p < 0.01; and 2.4-fold, p < 0.05). Dexamethasone decreased ligand binding (-60%, p < 0.02) without changing mRNA. Tumor necrosis factor alpha decreased C5L2 mRNA (-88% in preadipocytes and -38% in adipocytes, p < 0.001), C5L2 cell-surface protein (-53% in preadipocytes, p < 0.0001), and ASP binding (-60% and -49% in, respectively, preadipocytes and adipocytes, p < 0.05). Conversely, 1 micromol/L and 10 nmol/L rosiglitazone increased, respectively, C5L2 mRNA (9.3-fold, p < 0.0001) and ASP binding (2.4-fold, p < 0.05). Thus, C5L2 mRNA increases with differentiation, insulin, and thiazolidinedione treatment, and decreases with tumor necrosis factor alpha, all of which results in functional changes in ASP-C5L2 response and may have implications for human metabolism.  相似文献   

20.
The monoglucosylated oligomannose N-linked oligosaccharide (Glc(1)Man(9)GlcNAc(2)) is a retention signal for the calnexin-calreticulin quality control pathway in the endoplasmic reticulum. We report here the presence of such monoglucosylated N-glycans on the human complement serum glycoprotein C3. This finding represents the first report of monoglucosylated glycans on a human serum glycoprotein from non-diseased individuals. The presence of the glucose moiety in 5% of the human C3 glycoprotein suggests that this glycosylation site is sequestered within the protein and is consistent with previous studies identifying a cryptic conglutinin binding site on C3 that becomes exposed upon its conversion to iC3b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号