首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   

2.
The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field.  相似文献   

3.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   

4.
以蒺藜苜蓿(Medicagotrunctulacv.5160)幼果总RNA为模板,采用RT-PCR技术克隆到二氢黄酮还原酶(DFR)基因的cDNA序列,所获得的cDNA序列全长1018 bp,具有完整的ORF,编码337个氨基酸。Blast分析表明,该片段与GenBank中注册的DFR基因同源性为99.80%。以植物表达载体pBI121为基础,构建了Ca MV35S启动子驱动的DFR基因植物表达载体pBIDFR;采用直接转化法将pBIDFR导入根癌农杆菌EHA105,用该菌株对普通烟草进行遗传转化获得6株转基因植株。  相似文献   

5.
A Nicotiana tabacum cv. Xanthi cell culture was initiated from a transgenic plant expressing a human anti-rabies virus monoclonal antibody. Within 3 months, plant cell suspension cultures were established and recombinant protein expression was examined. The antibody was stably produced during culture growth. ELISA, protein G purification, Western blotting, and neutralization assay confirmed that the antibody was fully processed, with association of light and heavy-chains, and that it was able to bind and neutralize rabies virus. Quantification of antibody production in plant cell suspension culture revealed 30 microg/g of cell dry weight for the highest-producing culture (0.5 mg/L), 3 times higher than from the original transgenic plant. The same production level was observed 3 months after cell culture initiation. Plant cell suspension cultures were successfully grown in a new disposable plastic bioreactor, with a growth rate and production level similar to that of cultures in Erlenmeyer flasks.  相似文献   

6.
This study tested the morphogenetic potential of 15 open reading frames of the TL-DNA of Agrobacterium rhizogenes strain HRI. These open reading frames were expressed individually under the control of the 35S RNA promoter in transgenic tobacco plants ( Nicotiana tabacum L.). Expression of three T-DNA loci, ORF3n, ORF8 and ORF13, alters plant morphogenesis or the response of transgenic tissues to plant hormones. ORF3n transgenic plants are characterized by retarded flowering, altered internode elongation, altered leaf shape and, in particular, leaf tip necrosis. ORF3n and ORF8 expression reduces the sensitivity to auxin and cytokinin in combination or auxin alone. Tetracycline-dependent expression of ORF13 overcomes a selection of low levels of expression during plant regeneration and reveals a strong inhibitory effect of the ORF13 gene product on cell division and cell elongation. We conclude that the A. rhizogenes TL-DNA harbors genetic information that is important for pathogenicity apart from the well studied rol genes. We propose that these genes play mainly a negative regulatory role during pathogenesis. Moreover, these loci might be relevant to successful infections in specific host plants.  相似文献   

7.
Three deletion mutants of tobacco mosaic virus (TMV) 54-kD putative replicase gene (54K) were obtained by PCR, and cloned into plant expression vector p208, then transformed into Nicotiana tabacum L. cv. SR1 by Agrobacterium tumefaciens (Smith et Townsend) Conn Ti plasmid-mediated transformation. All the transgenic plants with the N-terminal deletion mutant, the C-terminal deletion mutant and the only 261 nucleotides region from the central part of the 54K ORF showed significant resistance against TMV.   相似文献   

8.
Transgenic tobacco (Nicotiana tabacum cv Xanthi) plants expressing a genetically engineered fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase were produced. The expression plasmid pGFC2 for the fused enzyme was constructed by insertion of the corresponding cDNA into the expression vector pNG01 under the control of the cauliflower mosaic virus 35S promoter and nopaline synthase gene terminator. The fused enzyme cDNA was integrated into tobacco genomes by Agrobacterium infection techniques. In transgenic tobacco plants, the fused enzyme protein was localized primarily in the microsomal fraction. The microsomal monooxygenase activities were approximately 10 times higher toward both 7-ethoxycoumarin and benzo[a]pyrene than in the control plant. The transgenic plants also showed resistance to the herbicide chlortoluron.  相似文献   

9.
Three deletion mutants of tobacco mosaic virus (TMV) 54-kD putative replicase gene (54K) were obtained by PCR, and cloned into plant expression vector p208, then transformed into Nicotiana tabacum L. cv. SR1 by Agrobacterium tumefaciens (Smith et Townsend) Conn Ti plasmid-mediated transformation. All the transgenic plants with the N-terminal deletion mutant, the C-terminal deletion mutant and the only 261 nucleotides region from the central part of the 54K ORF showed significant resistance against TMV.  相似文献   

10.
Matsuda Y  Liang G  Zhu Y  Ma F  Nelson RS  Ding B 《Protoplasma》2002,219(1-2):51-58
Previous work has demonstrated that some endogenous plant gene promoters are active in selective companion cells of the phloem, depending on organ types and developmental stages. Here we report that the Commelina yellow mottle virus (CoYMV) promoter is active in the companion cells of leaves, stems and roots of transgenic Nicotiana tabacum cv. Xanthi NN, using beta-glucuronidase (GUS) as a reporter. Thus, the CoYMV promoter has a broad organ specificity. This promoter can be useful in molecular studies on the functions of companion cells in many aspects of phloem biology, such as regulation of long-distance transport, macromolecular traffic, plant development and interaction with pathogens. It may also be useful in engineering crops that produce specific gene products in the companion cells to block long-distance movement of pathogens.  相似文献   

11.
Jeong WJ  Park YI  Suh K  Raven JA  Yoo OJ  Liu JR 《Plant physiology》2002,129(1):112-121
We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities.  相似文献   

12.
The plasmid pYDH208, which confers the ability to catabolize the mannityl opines mannopine and agropine, was mobilized into the nonpathogenic Pseudomonas syringae strain Cit7. The growth of the mannityl opine-catabolizing strain Cit7(pYDH208) was compared with that of the near-isogenic non-opine-catabolizing strain Cit7xylE on leaves of wild-type tobacco (Nicotiana tabacum cv. Xanthi) and transgenic mannityl opine-producing tobacco plants (N. tabacum cv. Xanthi, line 2-26). The population size of Cit7(pYDH208) was significantly greater on the lower leaves of transgenic plants than on middle or upper leaves of those plants. The population size of Cit7(pYDH208) on lower leaves of transgenic plants was also significantly greater than the population size of Cit7xylE on similar leaves of wild-type plants. High-voltage paper electrophoresis demonstrated higher levels of mannityl opines in washings from lower- and mid-level leaves than in washings from upper-level leaves. The ability of Cit7(pYDH208) to catabolize mannityl opines in the carbon-limited phyllosphere increased the carrying capacity of the lower leaves of transgenic plants for Cit7(pYDH208). In coinoculations, the increase in the ratio of population sizes of Cit7(pYDH208) to Cit7xylE on transgenic plants was apparently due to a subtle difference in the growth rates of the two strains and to the difference in final population sizes. An ability to utilize additional carbon sources on the transgenic plants also enabled Cit7(pYDH208) to achieve a higher degree of coexistence with Cit7xylE on transgenic plants than on wild-type plants. This supports the hypothesis that the level of coexistence between epiphytic bacterial populations can be altered through nutritional resource partitioning.  相似文献   

13.
14.
Physiology and Molecular Biology of Plants - Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen...  相似文献   

15.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected.  相似文献   

16.
The ethylene biosynthesis-inducing xylanase (EIX) is known to be a potent elicitor of ethylene biosynthesis and other responses when applied to leaf tissue of Nicotiana tabacum L. cv Xanthi. In contrast, leaf tissue of the tobacco cultivar Hicks was insensitive to EIX at concentrations 100-fold higher than was needed to elicit responses from Xanthi. Cell-suspension cultures of Xanthi and Hicks showed similar differences in sensitivity to EIX. Equivalent levels of ethylene production were elicited in leaf discs of both cultivars after treatment with CuSO4. The F1 and Xanthi backcross progeny of Hicks and Xanthi crosses were all sensitive to EIX, whereas the F2 and Hicks backcross progeny segregated for sensitivity to EIX. Individual plants from the F2 and Hicks backcross that were insensitive to EIX produced only insensitive progeny when they were self-pollinated. Progeny from sensitive plants either segregated for sensitivity to EIX or produced all sensitive progeny (an F2 plant). Sensitivity to EIX is controlled by a single dominant gene, based on chi-square analysis of segregation ratios.  相似文献   

17.
Lebrun-Garcia A  Chiltz A  Gout E  Bligny R  Pugin A 《Planta》2002,214(5):792-797
Elicitors of plant defence reactions, oligogalacturonides and cryptogein, an elicitin produced by Phytophthora cryptogea, were previously shown to induce a rapid and transient activation of two mitogen-activated protein kinases (MAPKs) in cells of tobacco [ Nicotiana tabacum L. cv. Xanthi; A. Lebrun-Garcia et al. (1998) Plant J 15:773-781]. We verified that these two MAPKs correspond to the salicylic acid-induced protein kinase (SIPK) and the wound-induced protein kinase (WIPK). The involvement of salicylic acid (SA) in cryptogein-induced MAPK activation was investigated using transgenic NahG tobacco cells expressing the salicylate hydroxylase gene and thus unable to accumulate SA. The large and sustained activation of both MAPKs by cryptogein was maintained in transgenic cells compared with non-transgenic tobacco cells. Moreover, weak acids, namely SA, 4-hydroxybenzoic acid, an ineffective analogue of SA in plant resistance, and butyric acid acidified the cytosol, a physiological event also induced by cryptogein, but activated both MAPKs only slightly and transiently in tobacco cells. These results indicate that MAPK activation by cryptogein is not mediated by SA, that cytosolic acidification can be transduced by MAPKs, and that in cryptogein-treated cells, cytosolic acidification should contribute poorly to MAPK activation.  相似文献   

18.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected. Received: 11 July 1996 / Accepted: 19 November 1996  相似文献   

19.
To protect themselves, plants have evolved an armoury of defences in response to pathogens and other stress situations. These include the production of pathogenesis-related (PR) proteins and the accumulation of antimicrobial molecules such as phytoalexins. Here we report that resistance of tobacco to Botrytis cinerea is cultivar specific. Nicotiana tabacum cv. Petit Havana but not N. tabacum cv. Xanthi or cv. samsun is resistant to B. cinerea . This resistance is correlated with the accumulation of the phytoalexin scopoletin and PR proteins. We also show that this resistance depends on the type of B. cinerea stage. Nicotiana tabacum cv. Petit Havana is more resistant to spores than to mycelium of B. cinerea . This reduced resistance of N. tabacum cv. Petit Havana to the mycelium compared with spores is correlated with the suppression of PR proteins accumulation and the capacity of the mycelium, not the spores, to metabolize scopoletin. These data present an important advance in understanding the strategies used by B. cinerea to establish its disease on tobacco plants.  相似文献   

20.
In order to understand the role of cytosolic antioxidant enzymes in drought stress protection, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants overexpressing cytosolic Cu/Zn-superoxide dismutase (cytsod) (EC 1.15.1.1) or ascorbate peroxidase (cytapx) (EC 1.11.1.1) alone, or in combination, were produced and tested for tolerance against mild water stress. The results showed that the simultaneous overexpression of Cu/Znsod and apx or at least apx in the cytosol of transgenic tobacco plants alleviates, to some extent, the damage produced by water stress conditions. This was correlated with higher water use efficiency and better photosynthetic rates. In general, oxidative stress parameters, such as lipid peroxidation, electrolyte leakage, and H(2)O(2) levels, were higher in non-transformed plants than in transgenic lines, suggesting that, at the least, overexpression of cytapx protects tobacco membranes from water stress. In these conditions, the activity of other antioxidant enzymes was induced in transgenic lines at the subcellular level. Moreover, an increase in the activity of some antioxidant enzymes was also observed in the chloroplast of transgenic plants overexpressing cytsod and/or cytapx. These results suggest the positive influence of cytosolic antioxidant metabolism on the chloroplast and underline the complexity of the regulation network of plant antioxidant defences during drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号