首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesophyll protoplasts were isolated from the leaves of wheat and corn seedlings. After purification the protoplasts were judged to be free of contaminating proteases in the isolation enzymes based on specific activity of the proteases in comparison to leaf tissue and their response to inhibitors that “differentiated” between leaf and isolation enzyme proteases. Wheat protoplasts showed rates of photosynthesis of 95 to 100 micromoles O2 per milligram chlorophyll per hour, while corn exhibited rates of 35 to 85 micromoles O2 per milligram chlorophyll per hour, indicating the intactness of the chloroplasts within the protoplasts. These chloroplasts were isolated from the protoplasts using the procedure of Robinson and Walker (1979 Arch Biochem Biophys 196: 319-323). Yields of 91 and 82% intact chloroplasts were obtained from wheat and corn, respectively, based on the distribution of ribulose bisphosphate carboxylase in wheat and NADP-malate dehydrogenase in corn. Vacuoles were obtained from the protoplasts using a modification of the techniques of Wagner and Siegelman (1975 Science 190: 1298-1299) and Saunders (1979 Plant Physiol 64: 74-78). The vacuoles were at least 98% free of protoplast contamination as determined by assaying for “marker” enzymes of chloroplasts, mitochondria, and endoplasmic reticulum. Assuming one vacuole per protoplast, the vacuoles contained 4% of the soluble protein of the protoplasts in wheat and 8% in corn. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuoles. Although the isolated chloroplasts always retained about 13% of the proteolytic activity of the protoplasts, this could be accounted for by that which became associated with the chloroplasts during their isolation.  相似文献   

2.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

3.
Ribulose bisphosphate carboxylase from Lemna minor resembles the structure reported for the enzyme from other plants. When grown in the light, the enzyme appears to undergo little or no degradation, as measured by a double-isotope method. This situation is similar to that reported for wheat and barley, but is unlike that reported for maize, where the enzyme degrades at the same rate as total protein. Prolonged periods of darkness usually induce leaf senescence, characterized by the rapid degradation of chlorophyll and protein, with ribulose bisphosphate carboxylase undergoing preferential degradation. In L. minor there is selective protein degradation in the dark, but chlorophyll and ribulose bisphosphate carboxylase are stable when fronds are kept in the darkness for up to 8 days. It appears that Lemna is not programmed to senesce, or at least that darkness does not induce senescence in Lemna. Although there is no evidence for in vivo degradation or modification of ribulose bisphosphate carboxylase during prolonged periods of darkness, extracts from fronds which have been kept in the dark for periods in excess of 24 hours convert ribulose bisphosphate carboxylase to a more acidic form. The properties of the dark-induced system which acts on ribulose bisphosphate carboxylase, suggest that it may be a mixed function oxidase. The proposition that the selectivity of protein degradation is genetically determined, so that the rate at which a protein is degraded is determined by its charge or size, was tested for fronds grown in the light or maintained in the dark. There was no significant correlation between protein degradation and either charge or size, in light or dark.  相似文献   

4.
A technique has been developed for the rapid and simple measurement of ribulose 1,5-bisphosphate from isolated spinach chloroplasts. The endogenous ribulose bisphosphate was detected enzymically using (14)CO(2) and ribulose bisphosphate carboxylase/oxygenase released from the chloroplasts. Ribulose 5-phosphate kinase was inhibited with 0.4 to 0.6 millimolar 2,6-dichlorophenol-indophenol and 4 micromolar carbonyl cyanide m-chlorophenylhydrazone. Phosphoenolpyruvate carboxylase activity was low with washed chloroplasts and its labeled product, [(14)C]oxalacetate, was destroyed by heating with 1.0 n HCl at 90 C. The assay method was linear from 0.05 to 0.87 nanomoles ribulose bisphosphate per milliliter. The latter value was determined with chloroplast material having 44 micrograms of chlorophyll per milliliter. This technique was simple and direct, used less chloroplast material, yet provided results comparable to a previously described enzymic technique in which ribulose bisphosphate was determined after the precipitation of chloroplast proteins by perchloric acid.  相似文献   

5.
Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.  相似文献   

6.
Soon after attaining full expansion, soybean (Glycine max [L.] Merr.) leaves enter a senescence phase marked by decline in photosynthetic rate and the progressive loss of chloroplast activity and composition. Our primary goal was to determine if this loss could be accounted for by sequential degradation of whole chloroplasts or by simultaneous degeneration of all chloroplasts. Total photosynthesis (TPs) measured as 14CO2 uptake, chloroplast number, ribulose 1,5-bisphosphate carboxylase activity, uncoupled photosynthetic electron transport activity, soluble protein content, and chlorophyll content declined progressively during the 37 days after full leaf expansion. During this period, chloroplast number per unit leaf area was constant for all genotypes studied. We conclude that leaf senescence may be a two-stage process wherein the first stage chloroplast activity and composition declines, but chloroplast numbers do not change. During a brief terminal stage (11 days in our experiment), whole chloroplasts may be lost as well. As a second objective we wished to determine if variation in single-leaf total photosynthetic rate among soybean cultivars is related to corresponding variation in chloroplast number and/or chloroplast activity/composition. By comparing the means for three cultivars known to have rapid leaf TPs and for the three known to have slow TPs, we found the former group to be superior to the latter for all the previously mentioned leaf physiological traits. This superiority was related primarily to differences in chloroplast number and only secondarily to differences in activity and composition per chloroplast.  相似文献   

7.
The amounts of ribulose bisphosphate carboxylase protein decreasedrapidly with leaf age to a low content by the middle stage ofsenescence. In contrast, the decrease in chloroplast numberwas slight during the same period. This indicates that the enzymecan be degraded within the chloroplast before the chloroplastsdisintegrate during senescence. (Received September 3, 1983; Accepted November 24, 1983)  相似文献   

8.
Barley ( Hordeum vulgare L. cv. Salome) primary leaf segments responded to the application of a putative plant growth regulator, ± jasmonic acid methylester (JA-Me). with accelerated senescence, as indicated by the loss of chlorophyll and the rapid decrease in activity and immunoreactive protein content of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39). The senescence-promoting action of JA-Me differed in light and in darkness; e.g. the initial rates of chlorophyll and RuBP carboxylase breakdown were markedly higher in light than in darkness in the presence of 4.10−5 M JA-Me. Cytokinin (benzyladenine, 4.10−5 M ) stopped the loss of chlorophyll and RuBP carboxylase during senescence; however, the rapid drop induced by JA-Me in the early phase of leaf segment senescence could not be prevented by concomitant or previous addition of BA. On the other hand, BA added 24 h after JA-Me application resulted in a recovery of chlorophyll and RuBP carboxylase at the later stages, indicating a possible rapid inactivation of JA-Me in the tissues. The activities of a number of other chloroplastic and cytosolic enzymes were not significantly altered in JA-Me-treated leaf segments compared with controls floated on water. Time-dependent chlorophyll decrease in isolated chloroplasts did not change upon JA-Me addition to the isolated organelles. It is suggested that JA-Me acts on chloroplast senescence by promoting cytoplasic events which eventually bring about the degradation of chloroplast constituents.  相似文献   

9.
The large subunit of ribulose bisphosphate carboxylase from Anacystis nidulans 6301, and the β subunit of chloroplast ATP synthase from maize, were fused to the transit peptide of the small subunit of ribulose bisphosphate carboxylase from soybean. These proteins were assayed for post-translational import into isolated pea chloroplasts. Both proteins were imported into chloroplasts. Imported large subunits were associated with two distinct macromolecular structures. The smaller of these structures was a hybrid ribulose bisphosphate carboxylase holoenzyme, and the larger was the binding protein oligomer. Time-course experiments following import of the large subunit revealed that the amount of large subunit associated with the binding protein oligomer decreased over time, and that the amount of large subunit present in the assembled holoenzyme increased. We also observed that imported small subunits of ribulose bisphosphate carboxylase, although predominantly present in the holoenzyme, were also found associated with the binding protein oligomer. In contrast, the imported β subunit of chloroplast ATP synthase did not assemble into a thylakoid-bound coupling factor complex.  相似文献   

10.
Ribulose bisphosphate carboxylase consists of cytoplasmically synthesized "small" subunits and chloroplast-synthesized "large" subunits. Large subunits of ribulose bisphosphate carboxylase synthesized in vivo or in organello can be recovered from intact chloroplasts in the form of two different complexes with sedimentation coefficients of 7S and 29S. About one-third to one-half of the large subunits synthesized in isolated chloroplasts are found in the 7S complex, the remainder being found in the 29S complex. Upon prolonged illumination of the chloroplasts, newly synthesized large subunits accumulate in the 18S ribulose bisphosphate carboxylase molecule and disappear from both the 7S and the 29S large subunit complexes. The 29S complex undergoes an in vitro dissociation reaction and is not as stable as ribulose bisphosphate carboxylase. The data indicate that (a) the 7S large subunit complex is a chloroplast product, the (b) the 29S large subunit complex is labeled in vivo, that (c) each of these two complexes can account quantitatively for all the large subunits assembled into RuBPCase in organello, and that (d) excess large subunits are degraded in chloroplasts.  相似文献   

11.
The concept of ribulose bisphosphate carboxylase as a storage protein is not supported in the case of Lemna minor, where the enzyme appears to be particularly stable under conditions of nitrogen starvation. Total nutrient starvation in light and in the dark induced the degradation of this enzyme, but not at an enhanced rate compared with other leaf proteins and, surprisingly, darkness inhibited the degradation of chlorophyll which occurs with total nutrient starvation in the light. The data suggest that Lemna is not programmed to senesce in response to nutrient starvation. Differences in the pattern of protein degradation, which occurred under the stress conditions employed, are not consistent with a simple model of protein degradation in which the degradative system is assumed to be located in the vacuole. The data is best explained by a dual system in which cytosolic proteins are degraded by a vacuolar/lysosomal system and chloroplast proteins are degraded within the chloroplast. Whatever the system of degradation, our data do not support the proposed correlation between the rate of protein degradation and either protein charge or size.  相似文献   

12.
Special culture conditions for Euglena gracilis Z and ZR are described. They induce interactions between the chloroplast and mitochondrial metabolisms leading to paramylon synthesis. When grown in continuous light under pure nitrogen and in the presence of lactate as the sole carbon source, sugar synthesis occurs during the first 24 h of culture with the participation of both mitochondria (using lactate) and of chloroplasts (fixing CO2 from lactate decarboxylation). The activities of ribulose bisphosphate carboxylase, phosphoenolpyruvate carboxylase, and phosphoenolpyruvate carboxykinase are very high and mitochondria and chloroplasts develop then a common network of vesicles in which paramylon grains can be seen. Electron micrographs demonstrate membrane continuity between the two types of organelles. Occasionally the mitochondrial matrix and the chloroplast stroma are separated by only a unit membrane.Abbreviations Chl chlorophyll - OAA oxaloacetic acid - PEP phosphoenolpyruvate - RuBP ribulose bisphosphate - DTT 1,4-dithiothreitol - PVP polyvinylpyrrolidone  相似文献   

13.
14.
Effect of pod removal on leaf senescence in soybeans   总被引:36,自引:24,他引:12       下载免费PDF全文
Depodding soybean (Glycine max [L] Merr. cv Wye) plants results in an apparent inhibition of senescence as indicated by leaf chlorophyll and soluble protein retention. However, leaf photosynthesis and ribulose bisphosphate carboxylase (Rubisco) levels begin to decline earlier in depodded than in control, podded plants. The initial decline in photosynthesis is correlated with a decrease in leaf transpiration, while the latter decline is associated with the loss of Rubisco. Total soluble protein remains high in depodded plants because several polypeptides, three in particular, increase in amounts sufficient to offset the loss of Rubisco. Thus, depodding appears to change the function of the leaf rather than simply delaying or preventing the decline in leaf function. Changes in specific leaf weight and starch content following depodding suggest that the leaf may be changing to a storage organ.  相似文献   

15.
Excised primary leaves of spinach (Spinacia oleracea) incorporate [35S]-methionine into a number of chloroplast polypeptides. The ratio of incorporation of isotope into the large subunit of ribulose bisphosphate carboxylase relative to a thylakoid polypeptide (peak D) decreases during leaf development in whole leaves; this changing pattern of incorporation is also observed in isolated chloroplasts where these two polypeptides are the major products of protein synthesis. Chloroplast RNA prepared from developing leaves was translated in a reticulocyte lysate extract to yield full-length carboxylase large subunit and peak D polypeptides. The fidelity of translation of these two polypeptides was checked by partial protease digestion. Changes in the synthesis of the large subunit of the carboxylase and peak D in developing leaves are reflected in changes in the amount of translatable mRNA for these two polypeptides.  相似文献   

16.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

17.
Ribulose bisphosphate carboxylase small subunit protein is synthesized in the cytoplasm as a precursor and transported into the chloroplast where the amino-terminal portion, the transit peptide, is removed proteolytically. To obtain chloroplast delivery of the 43-kDa 5-enolpyruvyl 3-phosphoshikimate (EPSP) synthase of Salmonella typhimurium, we constructed fusion proteins between the bacterial EPSP synthase and the ribulose bisphosphate carboxylase small subunit. A fusion protein consisting of the transit peptide fused to the EPSP synthase was not transported in vitro or in vivo into chloroplasts. A second fusion protein consisting of the transit peptide and 24 amino acids of the mature small subunit fused to the EPSP synthase was transported both in vitro and in vivo into chloroplasts. It was processed into two polypeptides of 46 and 47 kDa, respectively. This heterogeneity in processing was not caused by the presence of the aroA start codon, since its removal resulted in the same pattern. Substituting 24 different amino acids for the 24 amino acids of the mature small subunit resulted in a fusion protein that was not transported into the chloroplast. It was concluded that a portion of the mature small subunit was needed for efficient chloroplast delivery.  相似文献   

18.
Changes in ribulose bisphosphate carboxylase (RuBPCase) and proteolytic activity were followed in the flag leaf and second leaf of field-grown winter wheat (cv. Arthur). These changes were followed in relation to changes in leaf chlorophyll, protein, and photosynthesis, and seed development. Levels of RuBPCase were determined by rocket immunoelectrophoresis as described previously (Wittenbach 1978 Plant Physiol 62: 604-608). RuBPCase constituted 40 to 45% of the total soluble protein in the flag leaf and an even higher percentage of the soluble protein in the second leaf. This ratio remained unchanged until senescence when RuBPCase protein was apparently lost at a faster rate than total soluble protein. No change in the specific activity of RuBPCase on either a milligram protein or RuBPCase basis was observed until senescence. A close correlation existed among the various indices of senescence in the field, namely, the decline in chlorophyll, protein, photosynthesis, and RuBPCase activity. In addition, proteinase activity increased with the onset of senescence. These enzymes readily degraded RuBPCase, exhibiting a pH optimum of 4.8 to 5.0 and a temperature optimum of 50 C. Proteinase activity was modified by sulfydryl reagents suggesting the presence of sulfydryl groups at or near the active sites.  相似文献   

19.
Immunocytochemical electron-microscopic observation indicated that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and/or its degradation products are localized in small spherical bodies having a diameter of 0.4-1.2 micro m in naturally senescing leaves of wheat (Triticum aestivum L.). These Rubisco-containing bodies (RCBs) were found in the cytoplasm and in the vacuole. RCBs contained another stromal protein, chloroplastic glutamine synthetase, but not thylakoid proteins. Ultrastructural analysis suggested that RCBs had double membranes, which seemed to be derived from the chloroplast envelope, and that RCBs were further surrounded by the other membrane structures in the cytoplasm. The appearance of RCBs was the most remarkable when the amount of Rubisco started to decrease at the early phase of leaf senescence. These results suggest that RCBs might be involved in the degradation process of Rubisco outside of chloroplasts during leaf senescence.  相似文献   

20.
We recently reported that autophagy plays a role in chloroplasts degradation in individually-darkened senescing leaves. Chloroplasts contain approximately 80% of total leaf nitrogen, mainly as photosynthetic proteins, predominantly ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco). During leaf senescence, chloroplast proteins are degraded as a major source of nitrogen for new growth. Concomitantly, while decreasing in size, chloroplasts undergo transformation to non-photosynthetic gerontoplasts. Likewise, over time the population of chloroplasts (gerontoplasts) in mesophyll cells also decreases. While bulk degradation of the cytosol and organelles is mediated by autophagy, the role of chloroplast degradation is still unclear. In our latest study, we darkened individual leaves to observe chloroplast autophagy during accelerated senescence. At the end of the treatment period chloroplasts were much smaller in wild-type than in the autophagy defective mutant, atg4a4b-1, with the number of chloroplasts decreasing only in wild-type. Visualizing the chloroplast fractions accumulated in the vacuole, we concluded that chloroplasts were degraded by two different pathways, one was partial degradation by small vesicles containing only stromal-component (Rubisco containing bodies; RCBs) and the other was whole chloroplast degradation. Together, these pathways may explain the morphological attenuation of chloroplasts during leaf senescence and describe the fate of chloroplasts.Key words: Arabidopsis, autophagy, chloroplast, dark treatment, leaf senescence, nutrients recyclingThe most abundant chloroplast protein is Rubisco, comprising approximately 50% of the soluble protein.1 The amount of Rubisco decreases rapidly in the early phase of leaf senescence, and more slowly in the later phase. During senescence, chloroplasts gradually shrink and their numbers gradually decrease in mesophyll cells.2,3 During leaf senescence, leaves lose approximately 75% of their Rubisco, while chloroplast numbers decrease by only about 15%.4 Previous studies showed chloroplasts localized within the central vacuole by electron microscopy, indicating chloroplast degradation in the highly hydrolytic vacuole.5 However, there was no direct evidence showing translocation of chloroplasts from the cytosol to the vacuole, and the mechanism of transportation was also unclear.Recent reverse genetic approaches are helping to elucidate the autophagy system in plants, which has a similar molecular mechanism as in yeast.611 In Arabidopsis (Arabidopsis thaliana), atg mutants have phenotypically accelerated leaf senescence, insufficient root elongation in nutrient starvation condition and reduced seeds yields, therefore, autophagy is considered to be important for nutrient recycling especially nutrient starvation and senescence in plants.12In Arabidopsis, individually darkened rosette leaves (IDLs) exhibit enhanced senescence.13 Appling IDLs treatment as an experimental model of leaf senescence, we recently demonstrated that chloroplasts are degraded in two different pathways by autophagy, one for RCBs,14,15 and one for whole chloroplast.16 Darkened leaves became pale in 3 to 5 days treatment, while illuminated parts normally grow in both wild-type and autophagy defective mutant, atg4a4b-1. Furthermore, genes specifically expressed during senescence, SAG12 and SEN1, were rapidly upregulated, meanwhile, photosynthetic genes, such as RBCS2B and CAB2B, were gradually downregulated. All analyzed ATG genes were also upregulated under IDL treatment, which suggests that autophagy is important in IDL senescence. It has been reported that approximately three quarter genes of upregulated in IDL were also upregulated in naturally senescing leaves, including the ATG genes.17 This suggests that the autophagy pathways used in IDLs are also used in naturally senescing leaves.Over the 5 day treatment period, chloroplasts of wild-type IDL shrink to approximately one third their original size. In atg4a4b-1, by contrast, chloroplasts shrinkage occurred immediately after the start of IDL treatment after which no further shrinkage was noted. While the shrunk chloroplasts in fixed cells of wild-type were still smooth and round, while wrinkly chloroplasts were observed in atg4a4b-1. At same time, in the living mesophyll cells of wild-type IDL, RCBs accumulated in the vacuole (Fig 1B). The shrinkage of chloroplasts may be due to the consumption of the chloroplast envelope by RCB formation. Immunological quantification of inner and outer envelope proteins might confirm this hypothesis. The chloroplast number was also gradually decreased in IDL of wild-type plants, but no decline in chloroplast number was noted in atg4a4b-1. Chloroplasts exhibiting chlorophyll auto-fluorescence were found in the vacuole of wild-type IDLs, but not in atg4a4b-1 IDLs. These results show that whole chloroplast degradation is also performed by autophagy. However, the transport pathway of whole chloroplasts into the vacuole remains unclear. The chloroplast, even in its shrunken state, is a large organelle, and the autophagosome, the carrier bodies of autophagy, which usually target small spherical organelles like mitochondria and peroxisomes, may be incapable of isolating large organelles. In the yeast autophagy system, specific cellular organelles and fractions are also transported via vacuolar membrane invagination using the microautophagy system.18 RCB uptake into the vacuole is termed macroautophagy, while larger organelles, such as chloroplasts, are engulfed in a process known as microautophagy. Whether there exists a molecular difference between these processes, or whether this is an arbitrary division based solely on the size of the consumed body is unclear.Open in a separate windowFigure 1Visualization of stroma-targeted DsRed and chlorophyll autofluorescence in living mesophyll cells of wild-type plants by laser-scanning confocal microscopy. A excised control leaf (A, Light) and an individually darkened leaf (B, IDL) from plants grown under 14 h-photoperiod condition and a leaf from whole-plant darkened condition (WD, C) for 5days were incubated with 1 µM concanamycin A in 10 mM MES-NaOH (pH 5.5) at 23C° for 20 h in darkness. Stroma-targeted DsRed appears green and chlorophyll fluorescence appears red. In merged images, overlap of DsRed and chlorophyll fluorescence appears yellow. Small vesicles with stromal-targeted DsRed, i.e. RCBs, can be found in the vacuole (A, B). In IDL (B), massive accumulation of stroma-targeted DsRed is entirely seen in the vacuolar lumen and chloroplasts losing DsRed fluorescence are found in some cells. Bars = 50 µm.Whole darkened plants exhibit retarded leaf aging, in contrast to the accelerated senescence in IDLs.13 Whole darkened plants suppress leaf senescence with the leaves retaining green color. After 5 days, in the mesophyll cells of whole darkened plants, any translocation of chloroplast components, stroma-targeted DsRed, RCBs, and whole chloroplasts, into the vacuole could hardly be detected (Fig. 1C). This suggests that autophagy is not induced by darkness alone, and is associated closely with senescence. ATG genes were downregulated in the whole darkened wild-type plants less than control plants during the treatment. Previous studies have shown that following about 5 day period of whole plant darkening, atg mutants lose their ability to protect themselves against photo-damage.7 Upon return to the light, these plant quickly undergo terminal photo-bleaching.Concentrations of chlorophyll, soluble protein, leaf nitrogen and Rubisco rapidly declined under IDL condition of both wild-type and atg4a4b-1. Considering the accumulated fluorescence of stroma-targeted Ds-Red in the vacuole and autophagy dependent size shrinkage of chloroplasts in IDL, in wild-type plants RCB autophagy appear to be responsible for a sizable proportion of chloroplast protein degradation. In atg4a4b-1 which cannot form RCBs, alternative degradation pathways must be upregulated, with chloroplast proteases the most likely candidates. Intriguingly, the decrease in Rubisco concentration proceeds at the almost identical rates in both wild-type and atg4a4b-1 plants, despite the different degradation pathways. It seems likely that the rate of Rubisco degradation may be regulated at an early step in the degradation pathway, by some, as yet unknown, factors.Chloroplasts appear to have the ability to control their volume during cell division, dividing and increasing their density up to the certain level,19 and transferring their cellular components between them via stromules.20 How chloroplasts are able to regulate their volume remains unclear, but it seems likely that chloroplasts grow and divide, like any other bacteria, as long as sufficient resources remain in the environment, in this case the cell. Total chloroplast volume, therefore, may be limited by the availability of carbon, nitrogen, or other nutrients in the cell during leaf emergence. Chloroplasts may be also able to reduce and control their volumes during leaf senescence via multiple degradation pathways. Our next goal is to estimate the contribution of both RCBs and whole chloroplasts autophagy in chloroplast protein degradation during natural leaf senescence. Further investigations are required for understanding the specific molecular mechanisms of RCB production and whole chloroplast degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号