首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5? Hoxb genes (Hoxb9Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5? half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5? Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5? Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5? Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.  相似文献   

2.
Genetic manipulation of the protozoan Leishmania has led to a better understanding of the survival and development of these pathogens within their hosts. The association of the Leishmania genome sequencing information with the ability of transposons to introduce or destroy phenotypes allows a global perspective on the role and importance of genes in cellular pathways. Herein we report the construction and testing of mariner transposable elements carrying the neomycin phosphotransferase, green fluorescent protein, or beta-glucuronidase genes as reporters for translational fusion events. We demonstrate that the expression of the reporter genes will occur only when the genes are inserted in-frame within predicted genes. Our results not only add to the mariner toolkit for gene manipulation but also strengthen the evidence that the mariner system is a reliable means for the study of gene expression in Leishmania.  相似文献   

3.
4.
5.
6.
In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, “classical” multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex phenotypic outcomes in multicellular organisms.  相似文献   

7.
8.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected.  相似文献   

9.

Background  

Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available.  相似文献   

10.
11.
Proper protein folding is key to producing recombinant proteins for structure determination. We have examined the effect of misfolded recombinant protein on gene expression in Escherichia coli. Comparison of expression patterns indicates a unique set of genes responding to translational misfolding. The response is in part analogous to heat shock and suggests a translational component to the regulation. We have further utilized the expression information to generate reporters responsive to protein misfolding. These reporters were used to identify properly folded recombinant proteins and to create soluble domains of insoluble proteins for structural studies.  相似文献   

12.
There is an increasing need for tissue-specific gene expression regulatory elements to study normal and disease development in the mouse. However, the cloning and characterization of these elements are time-consuming and costly. Thus, there is a particular need to be able to identify gene expression patterns without having to clone the promoter elements. Gene-trap strategies identify expression patterns assigned for endogenous genes using reporters, such as LacZ (Gossler et al., 1989; Skarnes, 1990) or green fluorescent protein (GFP) (Ishida and Leder, 1999; Zheng and Hughes, 1999). The gene-trap vector randomly inserts into the genome and "steals" regulatory elements for the reporter. Here we describe an improved gene-trap strategy, which allows an efficient Cre recombinase-mediated insertion of any transgene into the trapped loci as a post-integrational modification and links the expression of the transgene to that of the reporter.  相似文献   

13.
Genetic transformation systems using reporter genes in whole plants have a wide variety of applications for molecular biological study including the visualization of expression patterns of particular genes and intracellular biological phenomena as well as the identification of novel genes. In this study, we assessed co-expression of each three codon-optimized reporter genes and a selectable marker in the nuclear transformation system of whole Pyropia yezoensis, a red marine alga. With the use of an endogenous promoter, both the codon-optimized hygromycin resistance gene and ß-glucuronidase gene (PyGUS) were co-expressed in P. yezoensis cells. A high level of GUS activity was observed in 60 % of the individuals in hygromycin-resistant lines. A histochemical GUS assay revealed that the PyGUS reporter gene was stably introduced and expressed throughout the algae's life cycle. In addition, two live cell reporters, humanized cyan fluorescent protein from Anemonia majano and luciferase from Gaussia princeps, were successfully expressed in whole P. yezoensis. The development of this transformation system involving three types of reporter genes provides opportunities for monitoring temporal changes in gene expression and for genetic screening in red marine algae.  相似文献   

14.
15.
We describe a newRenilla reniformis luciferase reporter gene,RiLUC, which was designed to allow detection of luciferase activity in studies involvingAgrobacterium-based transient expression studies. TheRLUC gene was altered to contain a modified intron from the castor bean catalase gene while maintaining consensus eukaryotic splicing sites recognized by the plant spliceosome.RLUC andRiLUC reporter genes were fused to the synthetic plant SUPER promoter. Luciferase activity within agrobacteria containing the SUPER-RLUC construct increased during growth in culture. In contrast, agrobacteria harboring the SUPER-RiLUC gene fusion showed no detectable luciferase activity. Agrobacteria containing these gene fusions were cotransformed with a compatible normalization plasmid containing a cauliflower mosaic virus 35S promoter (CaMV) joined to the firefly luciferase coding region (FiLUC) and infused into tobacco leaf tissues through stomatal openings. The kinetics of luciferase production from theRLUC orRiLUC reporters were consistent, with expression of theRiLUC gene being limited to transiently transformed plant cells.RiLUC activity from the reporter gene fusions was measured transiently and within stably transformed tobacco leaf tissues. Analysis of stably transformed tobacco plants harboring either reporter gene fusion showed that the intron altered neither the levels of luciferase activity nor tissue-specific expression patterns driven by the SUPER promoter. These results demonstrate that theRiLUC reporter gene can be used to monitor luciferase expression in transient and stable transformation experiments without interference from contaminating agrobacteria.  相似文献   

16.
17.
18.
19.
20.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected. Received: 11 July 1996 / Accepted: 19 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号