首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A sensitive and convenient method is described for estimating superoxide dismutase activity using a photochemical augmentation procedure. This method is applicable to both liquid assays and polyacrylamide gel electropherograms. The flux of superoxide is generated by illuminating a reaction mixture containing dianisidine and riboflavin by either a laser source or light from a fluorescent lamp. The oxidation of dianisidine, as sensitized by riboflavin, is enhanced by superoxide dismutase. The increase is linearly dependent on superoxide dismutase concentration. The photochemical reaction is allowed to proceed uninterrupted for a standardized optimum time and intensity of illumination and then terminated by addition of a buffer, ‘finibuf’, which stabilizes the chromophoric complex formed. This permits the spectrophotometric absorbance measurements of a number of samples collectively and also eliminates the interruption of illumination with the concomitant requirement of a spectrophotometer for constant recording of the absorbance. This method is of utility to both biochemists and clinicians.  相似文献   

2.
An extensive search resulted in the identification of pamoic acid as an inhibitor of superoxide dismutases. Pamoic acid appeared to rapidly and reversibly inhibit all types of superoxide dismutases and did so in both the cytochrome c reduction and in the dianisidine photooxidation assays, used to measure this activity. It could nevertheless be shown that pamoic acid did not at all inhibit superoxide dismutase but rather diminished the sensitivity of the assays. The mechanism proposed to account for this effect involved oxidation of pamoate, by O2?, to yield a pamoate radical which can then reduce cytochrome c or oxidize pyrogallol. Pamoate thus competes with superoxide dismutase for the available O2?, without affecting the observable effects of that O2? upon cytochrome c or upon pyrogallol. It consequently makes these assays less responsive to superoxide dismutase, while appearing to be without effect in the absence of superoxide dismutase. Several of the predicted consequences of this proposal were affirmed. Other workers, interested in finding inhibitors for superoxide dismutases, are hereby forwarned of this subtle snare.  相似文献   

3.
The use of 3,3′,5,5′-tetramethylbenzidine-H2O2 as a stain for the peroxidase activity of cytochrome P-450 (or cytochrome P-450 in sodium dodecyl sulfate polyacrylamide gels is described in this report. This reagent can be used to detect very low levels of heme-associated peroxidase activity. The blue-stained bands on polyacrylamide gels are distinet, and the color is stable. The stained gels can be photographed or scanned at 690 nm because the gel background remains clear. The stain is easily removed from the gels to permit subsequent protein staining. Staining first for peroxidase activity has no effect on the subsequent protein staining profile. The peroxidase activity of cytochrome P-450 (or cytochrome P-420) in immunoprecipitates in Ouchterlony double diffusion plates can also be detected using this reagent.  相似文献   

4.
The concentration of Leukotriene B4 (LTB4) demonstrated in early inflammation has been shown to induce leukocyte aggregation, chemotaxis and degranulation of polymorphonuclear leukocytes (PMN) in vitro. N-f-Met. Leu-Phe, a potent chemotactic factor, has been shown to activate neutrophils to produce chemiluminescence and produce superoxide radicals. The characteristics of the LTB4-induced degranulation of rabbit neutrophils are strikingly similar to those of the chemotactic factors. Thiols, and in partiicular glutathione, have been shown to have a marked inhibitory effect in clinical assays of superoxide dismutase (SOD) activity, using reactions which are supposedly specific for the superoxide ion. SOD is most frequently assessed by coupling a generator of O2? with an indicating scavenger for the radical. The enzyme then competes with the scavenger for the available O2? and inhibits the processes being observed, thus, the inhibition serves as a basis for estimation of SOD activity. A method proposed by Misra and Fridovich for the estimation of SOD activity is based on the photo-oxidation of dianisidine sensitised by riboflavin.This assay can be used to classify compounds as either SOD-like or glutathione-like. With a small quantity if LTB4 and LTD4, we obtained preliminary results for their effect on the assay (Table 1). They appear to be glutathione-like, i.e., reactive with the free-radical-generating system in preference to a specific reaction with O2? and are only slightly less effective than glutathione.Although our results are preliminary it is clear that the leukotrienes are effective as radical scavengers in this reaction. Further studies with two prostaglandis (products of the cycloxygenase pathway) will also be presented.  相似文献   

5.
Riboflavin, which causes plants to produce reactive oxygen species (ROS) when exposed to light, is an excellent photosensitizer for biocidal reactions. This study explores the possible protective role of riboflavin against waterlogging stress in tobacco plants. Tobacco seedlings (4 weeks old) were divided into four groups and pretreated with 0, 0.2, 0.5 or 1.0 mM riboflavin for 1 week, after which all groups were exposed to waterlogging stress for 7 days. We observed delayed leaf senescence and extended survival time, suggesting that riboflavin can confer increased waterlogging tolerance to plants as compared with the control (0 mM riboflavin). Enhanced stomatal closure was observed in the riboflavin-pretreated tobacco. We evaluated the levels of oxidative damage (H2O2 and lipid peroxidation), antioxidant enzyme (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) activity and antioxidant metabolites (including ascorbate and glutathione) in tobacco leaves that were pretreated with riboflavin. However, the results show that riboflavin pretreatment caused a decrease in chlorophyll content, antioxidant enzyme activity and redox values (AsA/DHA and GSH/GSSG), while causing a significant increase in lipid peroxidation, H2O2 accumulation and total ascorbate or glutathione content. In addition, the survival time and stomatal aperture of riboflavin-treated plants were significantly modified by exogenous application of GSH, well-known ROS scavenger. To explain the stomatal closure observed in tobacco plants, we propose a “damage avoidance” hypothesis based on riboflavin-mediated ROS toxicity. The protective function of the photosensitizer riboflavin may be highly significant for farming in frequently waterlogged areas.  相似文献   

6.
The usual method of staining polyacrylamide gel electropherograms for superoxide dismutase activity utilizes a photochemical flux of O2- to reduce nitroblue tetrazolium. Superoxide dismutases intercept O2-, preventing formazan production and thus causing achromatic bands. In the presence of H2O2, catalases also yield achromatic bands during this staining procedure. This is due to local elevation of pO2 by the catalatic decomposition of H2O2. O2, in turn, inhibits the reduction of the tetrazolium by O2-. This phenomenon provides a new activity stain for catalase. A previously described activity stain for catalase has also been reexamined and significantly improved.  相似文献   

7.
We compare cadmium and copper induced oxidative stress in tomato leaves and the antioxidative enzyme response during a time course of 96 h. Plants were subjected to 25 μM of CdCl2 or CuSO4 and malondialdehyde (MDA) level and activity of guaiacol peroxidase, superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were determined. The results showed that there was an early increase in the MDA level and in the guaiacol peroxidase activity more pronounced with copper exposure during almost all the time course of the experiment. The activity of superoxide dismutase and catalase was induced very early after cadmium and copper treatment, reached a maximal value after 12 h and then declined but it remained always slightly higher than the control at the end of the experiment. Ascorbate peroxidase activity pathway was similar to superoxide dismutase or catalase with a maximal activity after 48 h of heavy metal exposure. Induction of glutathione reductase activity observed only under copper exposure is maintained during almost all the experimental time. The antioxidative activity developed by tomato leaves is more induced by copper treatment. This can be related to the ability of this metal to induce more than cadmium an accumulation of reactive oxygen species (ROS) at the cellular level. Decline in the antioxidative enzymes activity at the end of the experiment can be a consequence of cadmium- and copper-inducing a further ROS formation that might affect enzymes activity.  相似文献   

8.
Glutathione peroxidase activity has been measured in erythrocytes from normal subjects and from trisomy 21 patients. The latter cases show about 50 % increase of this enzyme similar to the increase observed for superoxide dismutase (erythrocuprein) suggesting either localisation of the gene for glutathione peroxidase on chromosome 21 (as is the case for erythrocuprein) or regulation of this enzyme by intracellular levels of O2?, H2O2 or superoxide dismutase.  相似文献   

9.
Two deep-sea hydrothermal vent organisms, the tube worm Riftia pachyptila and the clam Calyptogena magnifica, contain superoxide dismutase, dianisidine peroxidase, and glutathione peroxidase. The tube worm trophosome exhibits an iron-containing superoxide dismutase, ordinarily associated with prokaryotes and not previously seen in an animal tissue, in accord with the presence of symbiotic bacteria in this tissue. The enzymes which provide a defense against oxygen toxicity are thus present in these animals.  相似文献   

10.
An ultrasensitive colorimetric assay for manganese is described. It is based upon the catalysis, by Mn(II), of the photochemical oxidation of o-dianisidine, sensitized by riboflavin. Catalase increases the Mn(II)-catalyzed rate of photosensitized oxidation of dianisidine to the bisazobiphenyl, while superoxide dismutase inhibits the rate. The mechanism appears to involve oxidation of Mn(II) by O2-, followed by oxidation of dianisidine by MnO2+ in equilibrium Mn(III). Cu(II) interferes, but Zn(II), Fe(II), Fe(III), Co(II), and Ni(II) do not. Chelating agents and thiol reductants also interfere. Interference by Cu(II) can be overcome by the addition of cyanide, while interference by organic compounds can be surmounted by wet ashing. This assay provides a linear response to Mn(II) over the range 10-2500 nM. The limit of detection was 5 nM Mn(II).  相似文献   

11.
Summary The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O 2 - and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals.It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be loosely bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals.  相似文献   

12.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

13.
To study whether responses of antioxidative enzymes to enhanced atmospheric CO2 concentrations are affected by plant nutrition, the activities of superoxide dismutase, catalase and peroxidase were investigated in leaves of 3-year-old beech trees grown with low (0.1 × optimum), intermediate (0.5 × optimum) and high (2 × optimum) nutrient supply rates in open-top chambers at either ambient (~ 355 μmol mol?1) or elevated (700 μmol mol?1) CO2 concentrations. These treatments resulted in foliar C/N ratios of about 20 in the presence of high and > 30 in the presence of low nutrient supply rates. Pigment and malon-dialdehyde contents were determined to assess plant stress levels. Low nutrient supply rates caused pigment loss, whereas elevated CO2 had no effect on pigmentation. Guaiacol peroxidase activities did not respond to either CO2 or nutrient treatment. Catalase activity decreased with decreasing nutrient supply rate and also in response to elevated CO2. Superoxidase dismutase activity was affected by both nutrient supply and CO2 concentration. In leaves from trees grown with the high-nutrient treatment, superoxide dismutase activity was low irrespective of CO2 concentration. In chlorotic leaves, superoxide dismutase activity was increased, suggesting an enhanced need for detoxification of reactive oxygen species. Leaves from plants grown under elevated CO2 with medium nutrient supply rates showed decreased malondialdehyde contents and superoxide dismutase activities. This suggests that the intrinsic oxidative stress of leaves was decreased under these conditions. These results imply that intrinsic oxidative stress is modulated by the balance between N and C assimilation.  相似文献   

14.
Two species of free-living nematodes, Turbatrix aceti and Caenorhabditis elegans, exhibited a marked sensitivity to 3 atm of 100% O2. Environmental changes in pH and temperature, which altered nematode respiration, resulted in alterations in the survival of these organisms under high pO2. Levels of defensive enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and dianisidine peroxidase were measured in the two species. No changes in the level of superoxide dismutase or catalase activity were induced by exposure of the nematodes to high pO2. Manipulation of these two enzymes was however achieved using the inhibitors 3-amino-1,2,4-triazole and diethyldithiocarbamate. 3-Amino-1,2,4-triazole (20 mM) eliminated greater than or equal to 80% of the catalase activity in vivo and diethyldithiocarbamate (5 mM) decreased the level of CuZn superoxide dismutase by greater than or equal to 70%. Both of these compounds increased the sensitivity of C. elegans to high pO2 toxicity. Compounds capable of intracellular redox-cycling with O2- -production, such as plumbagin, increased CN- -resistant respiration in the nematodes and imposed an O2-dependent toxicity. These experiments demonstrate the toxicity of intracellular O2- and H2O2 in nematodes and the importance of superoxide dismutase and catalase in providing a defense against these toxic molecules in vivo.  相似文献   

15.
Particles prepared from spinach chloroplast membranes with Triton X-100 inhibited the superoxide-mediated reduction of nitro-blue tetrazolium by riboflavin. This superoxide dismutase-like activity was of two kinds, one inactivated by heating and inhibited by H2O2 and the other insensitive to both of these treatments; both activities were destroyed by washing with concentrated Tris buffer or with EDTA. Attempts at reconstitution with transition metal ions suggested that two different forms of bound manganese may be responsible and it is proposed that the inhibition by H2O2 is indicative of three different oxidation states of particle-bound manganese. The possibility that the photosynthetic water-splitting system and superoxide dismutase have evolved from a single precursor is discussed.  相似文献   

16.
Riboflavin (vitamin B2) is required for normal plant growth and development. Previous studies have shown that riboflavin application can enhance pathogen resistance in plants. Here, we investigated the role of riboflavin in increasing drought tolerance (10 % PEG6000 treatment) in plants. We treated 4 week-old tobacco plants with five different levels of riboflavin (0, 4, 20, 100 and 500 μM) for 5 days and examined their antioxidant responses and levels of drought tolerance. Compared with the controls, low and moderate levels of riboflavin treatment enhanced drought tolerance in the tobacco plants, whereas higher concentrations of riboflavin (500 μM) impaired drought tolerance. Further analysis revealed that plants treated with 500 μM riboflavin accumulated higher levels of ROS (O2 ? and H2O2) and lipid peroxide than the control plants or plants treated with low levels of riboflavin. Consistent with this observation, the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were higher in plants treated with low or moderate (4, 20 and 100 μM) levels of riboflavin compared with the control. We also found that chlorophyll degraded rapidly in control and 500 μM riboflavin-treated plants under drought stress conditions. In addition, the survival times of the riboflavin-treated plants were significantly modified by treatment with reduced glutathione, a well-known ROS scavenger, under drought stress conditions. Thus, riboflavin-mediated ROS production may determine the effects of riboflavin on drought tolerance in tobacco plants.  相似文献   

17.
The activities of phenolase, peroxidase, cytochrome oxidase, catalase and superoxide dismutase, as well as the levels of lipid peroxides, were measured in plerocercoids of S. solidus taken from the body cavity of the fish (unactivated) and in plerocercoids which had been cultured in vitro, either under air, or under 95% N2, 5% CO2. When cultured anaerobically, the activities of phenolase, peroxidase and cytochrome oxidase all increased dramatically. Aerobically, only phenolase activity increased. Lipid peroxide levels and superoxide dismutase activity was similar at all stages and catalase could not be detected. It is suggested that the increased activity of oxidative enzymes in anaerobically cultured worms is an attempt to compensate for the reduced environmental pO2.  相似文献   

18.
Present study characterizes the anti-oxidative defense potential of four Brassica juncea varieties, Pusa Jaikisan, Varuna, RLM-198, and CS-52, differing in their ability to withstand salinity stress. 7-day-old seedlings raised in MS medium supplemented with 0, 50, 100, and 150 mM NaCl were used to monitor changes in the growth profile, level of stress marker molecules, and activities of important antioxidant enzymes. Increasing NaCl concentration resulted in a significant (P ≤ 0.05) reduction of shoot fresh and dry mass and vigor index in all the varieties tested. Maximum reduction in growth was recorded for RLM-198 while CS-52 maintained better growth characteristics. Varuna and RLM-198 exhibited a limited increase in superoxide dismutase, ascorbate peroxidase, and total peroxidase activity under increasing salinity. These varieties also recorded maximum salt stress-induced damage in terms of increased lipid peroxidation, H2O2 content, and electrolyte leakage. On the other hand, CS-52 recorded maximum proline accumulation with minimum levels of H2O2, electrolyte leakage, and malondialdehyde contents. With increasing salinity stress, CS-52 recorded maximal increase in the activity of antioxidant enzymes. However, catalase activity did not correlate with alterations in H2O2 levels under stress. Interestingly, a lower superoxide dismutase:ascorbate peroxidase ratio in CS-52 correlated with stress tolerance trait, while a comparatively higher superoxide dismutase:ascorbate peroxidase ratio in RLM-198 marked the susceptible nature of the variety. Our results propose that superoxide dismutase:ascorbate peroxidase ratio is the critical factor, determining the degree of stress tolerance in Brassica juncea.  相似文献   

19.
Effect of stress on the antioxidant enzymes and gastric ulceration   总被引:6,自引:0,他引:6  
The effect of cold-restraint stress on the antioxidant enzymes of the rat gastric mucosa was studied with a view to finding out their role in stress induced gastric ulceration. Histological examination revealed stress induced extensive damage of the surface epithelial cell with lesions extending upto submucosa in some cases. Stress causes time-dependent increase in histamine and pepsin content but decrease in acid content of the gastric fluid with the progress of ulceration (ulcer index) for two hours. The tissue lipid peroxidation was significantly increased as evidenced by accumulation of malondialdehyde. Since lipid peroxidation results from the generation of reactive oxygen species, stress effect was studied on some antioxidant enzymes such as superoxide dismutase, peroxidases and prostaglandin synthetase as a function of time. The time dependent increase in stress ulcer correlates well with the concomitant increase in superoxide dismutase activity and decrease in peroxidase and prostaglandin synthetase activity. This creates a favourable condition for accumulation of endogenous H2O2 and more reactive hydroxyl radical (OH·). Administration of antioxidants such as reduced glutathione or sodium benzoate prior to stress causes significant decrease in ulcer index and lipid peroxidation and protection of gastric peroxidase activity suggesting the involvement of reactive oxygen species in stress induced gastric ulceration. This is supported by thein vitro observation that OH· can also inactivate peroxidase and induce lipid peroxidation. As prostaglandin is known to offer cytoprotection, stress-induced loss of prostaglandin synthetase activity appears to aggravate the oxidative damage caused by reactive oxygen species.Abbreviations ROS reactive oxygen species - GPO gastric peroxidase - SOD superoxide dismutase - MDA malondialdehyde - GSH reduced glutathione - TCA trichloroacetic acid  相似文献   

20.
Ascorbate is present at high concentrations in neutrophils and becomes oxidized when the cells are stimulated. We have investigated the mechanism of oxidation by studying cultured HL60 cells and isolated neutrophils. Addition of H2O2 to ascorbate-loaded HL60 cells resulted in substantial oxidation of intracellular ascorbate. Oxidation was myeloperoxidase-dependent, but not attributable to hypochlorous acid, and can be explained by myeloperoxidase (MPO) exhibiting direct ascorbate peroxidase activity. When neutrophils were stimulated with phorbol myristate acetate, about 40% of their intracellular ascorbate was oxidized over 20 min. Ascorbate loss required NADPH oxidase activity but in contrast to the HL60 cells did not involve myeloperoxidase. It did not occur when exogenous H2O2 was added, was not inhibited by myeloperoxidase inhibitors, and was the same for normal and myeloperoxidase-deficient cells. Neutrophil ascorbate loss was enhanced when endogenous superoxide dismutase was inhibited by cyanide or diethyldithiocarbamate and appears to be due to oxidation by superoxide. We propose that in HL60 cells, MPO-dependent ascorbate oxidation occurs because cellular ascorbate can access newly synthesized MPO before it becomes packaged in granules: a mechanism not possible in neutrophils. In neutrophils, we estimate that ascorbate is capable of competing with superoxide dismutase for a small fraction of the superoxide they generate and propose that the superoxide responsible is likely to come from previously identified sites of intracellular NADPH oxidase activity. We speculate that ascorbate might protect the neutrophil against intracellular effects of superoxide generated at these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号