首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary The permeability properties of the plasma membrane of intact rod outer segments purified from bovine retinas (ROS) were studied with the aid of the optical probe neutral red as described in the companion paper. The following observations were made: (1) Electrical shunting of ROS membranes greatly stimulated Na+ and K+ transport, suggesting that this transport reflects Na+ and K+ currents, respectively. The dissipation of a Na+ gradient across the plasma membrane occurred with a half-time of 30 sec at 25°C. (2) The Na+ permeability was progressively inhibited when the external Ca2+ concentration was raised from 1 m to 20mm. A similar Ca2+ dependence was observed for H+ and Li+ transport. The Na+ permeability was not affected when the total internal Ca2+ content of ROS was varied between 0.1 mol Ca2+/mol rhodopsin and 7 mol Ca2+/mol rhodopsin, or when the free internal Ca2+ concentration was varied between 0.1 and 50 m. (3) The K+ permeability was progressively stimulated when the external Ca2+ concentration was raised from 0.001 to 1 m, whereas a further increase to 20mm was without effect. A similar Ca2+ dependence was observed for Rb+ and Cs+ transport. (4) At an external Ca2+ concentration in the micromolar range the rate of transport decreased in the order: Na+>K+=H+>Cs+>Li+. (5) Na+ fluxes depended in a sigmoidal way on the external Na+ concentration, suggesting that sodium ions move in pairs. The concentration dependence of uniport Na+ transport and that of Na+-stimulated Ca2+ efflux (exchange or antiport transport) were very similar.  相似文献   

2.
Fast-2, a membrane mutant of Paramecium aurelia, is due to a single-gene mutation and has behavioral abnormalities. Intracellular recordings through changes of external solutions were made. The mutant membrane hyperpolarized when it encountered solutions with low K+ concentration. This hyperpolarization and other associated activities were best observed in Ca- or Na-solutions devoid of K+. Membrane potential was plotted against the concentration of K+ (0.5 to 16 mM) in solutions of fixed Na+ or Ca++ concentration. The slopes of the curves for the mutant membrane were steeper than those for the wild type at the lower concentrations of K+. Inclusion of 2 mM tetraethylammonium chloride (TEA-Cl) counteracted the mutational effects. Spontaneous action potentials in Ba-solution and the electrically evoked action potentials in various solutions are normal in this mutant. We conclude that the resting permeability to K+ relative to the permeabilities to Na+ and Ca++ has been increased by the mutation.  相似文献   

3.
The halophyte Aster tripolium, unlike well-studied non-halophytic species, partially closes its stomata in response to high Na+ concentrations. Since A. tripolium possesses no specific morphological adaptation to salinity, this stomatal response, preventing excessive accumulation of Na+ within the shoot via control of the transpiration rate, is probably a principal feature of its salt tolerance within the shoot. The ionic basis of the stomatal response to Na+ was studied in guard cell protoplasts from A. tripolium and from a non-halophytic relative, Aster amellus, which exhibits classical stomatal opening on Na+. Patch-clamp studies revealed that plasma membrane K+ channels (inward and outward rectifiers) of the halophytic and the non-halophytic species are highly selective for K+ against Na+, and are very similar with respect to unitary conductance and direct sensitivity to Na+. On the other hand, both species possess a significant permeability to Na+ through non-rectifying cation channels activated by low (physiological) external Ca2+ concentrations. Finally, it appeared that the differential stomatal response between the two species is achieved, at least in part, by a Na+-sensing system in the halophyte which downregulates K+ uptake. Thus, increases in guard cell cytosolic Na+ concentration in A. tripolium but not in A. amellus, lead to a delayed (20–30 min) and dramatic deactivation of the K+ inward rectifier. This deactivation is probably mediated by an increase in cytosolic Ca2+ since buffering it abolishes the response. The possible role of K+ inward rectifiers in the response of A. tripolium’s stomata to Na+, suggested by patch-clamp studies, was confirmed by experiments demonstrating that specific blockade of inward rectifying channels mimics Na+ effects on stomatal aperture, and renders aperture refractory to Na+.  相似文献   

4.
Illumination of an Aplysia giant neuron evokes a membrane hyperpolarization which is associated with a membrane conductance increase of 15%. The light response is best elicited at 490 nM: the neuron also has an absorption peak at this wavelength. At the resting potential (-50 to -60 mV) illumination evokes an outward current in a voltage-clamped cell. This current reverses sign very close to EK calculated from direct measurements of internal and external K+ activity. Increases in external K+ concentration shift the reversal potential of the light-evoked response by the same amount as the change in EK. Decreases in external Na+ or Cl- do not affect the response. Therefore, the response is attributed to an increase in K+ conductance. Pressure injection of Ca2+ into this neuron also hyperpolarizes the cell membrane. This effect is also due largely to an increase in K+ conductance. The light response after Ca2+ injection does not appear to be altered. Pressure injection of EGTA abolished or greatly reduced the light response. The effect was reversible. We suggest that light acts upon a single pigment in this neuron, releasing Ca2+ which in turn increases K+ conductance, thereby hyperpolarizing the neuronal membrane.  相似文献   

5.
A number of organic molecules were found to increase the Na+ permeability of the Na+-selective membrane in frog skin epithelium quickly and reversibly when added to the outer bathing solution. The most effective was benzoylimidazole-guanidine. This substance stimulates the Na+ current by preventing the decrease of Na+ permeability which is normally caused by Na+ at the outer surface of the Na+-selective membrane.  相似文献   

6.
7.
The pH-dependent fluorescence quenching of acridine orange was used to study the Na+- and K+-dependent H+ fluxes in tonoplast vesicles isolated from storage tissue of red beet and sugar beet (Beta vulgaris L.). The Na+-dependent H+ flux across the tonoplast membrane could be resolved into two components: (a) a membrane potential-mediated flux through conductive pathways; and (b) an electroneutral flux which showed Michaelis-Menten kinetics relationship to Na+ concentration and was competitively inhibited by amiloride (Ki = 0.1 millimolar). The potential-dependent component of H+ flux showed an approximately linear dependence on Na+ concentration. In contrast, the K+-dependent H+ flux apparently consisted of a single component which showed an approximately linear dependence on K+ concentration, and was insensitive to amiloride. Based on the Na+- and K+-dependent H+ fluxes, the passive permeability of the vesicle preparation to Na+ was about half of that to K+.

The apparent Km for Na+ of the electroneutral Na+/H+ exchange varied by more than 3-fold (7.5-26.5 millimolar) when the internal and external pH values were changed in parallel. The results suggest a simple kinetic model for the operation of the Na+/H+ antiport which can account for the estimated in vivo accumulation ratio for Na+ into the vacuole.

  相似文献   

8.
Summary The influence of Ca2+ and other cations on electrolyte permeability has been studied in isolated membrane vesicles from cat pancreas.Ca2+ in the micromolar to millimolar concentration range, as well as Mg2+, Sr2+, Mn2+ and La3+ at a tested concentration of 10–4 m, increased Na+ permeability when applied at the vesicle inside. When added to the vesicle outside, however, they decreased Na+ permeability. Ba2+ was effective from the outside but not from the vesicle inside.When Ca2+ was present at both sides of the membrane, Na+ efflux was not affected as compared to that in the absence of Ca2+. Monovalent cations such as Rb+, Cs+, K+, Tris+ and choline+ decreased Na+ permeability when present at the vesicle outside at a concentration range of 10 to 100mm. Increasing Na+ concentrations from 10 to 100mm at the vesicle inside increased Na+ permeability.The temperature dependence of Na+ efflux revealed that the activation energy increased in the lower temperature range (0 to 10°C) when Ca2+ was present at the outside or at both sides, but not when present at the vesicle inside only or in the absence of Ca2+.The results suggest that the Ca2+ outside effect is due to binding of calcium to negatively charged phospholipids with a consequent reduction of both fluidity and Na+ permeability of the membrane. The Ca2+-inside effect most likely involves interaction with proteins with consequent increase in Na+ permeability.The data are consistent with current hypotheses on secretagogue-induced fluid secretion in acinar cells of the pancreas according to which secretagogues elicit NaCl and fluid secretion by liberating Ca2+ from cellular membranes and by stimulating Ca2+ influx into the cell. The increased intracellular Ca2+ concentration in turn increases the contraluminal Na+ permeability which leads to NaCl influx. The luminal sodium pump finally transports Na+ ions into the lumen.  相似文献   

9.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose.Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations.Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ > K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ > Na+). Neutral cation/H+ exchange rates (Na+ > K+) were not influenced by chelator or Mg2+.The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

10.
Summary The hemolytic activity of the terminal complement proteins (C5b-9) towards erythrocytes containing high potassium concentration has been reported to be dramatically increased when extracellular Na+ is substituted isotonically by K+ (Dalmasso, A.P., et al., 1975,J. Immunol. 115:63–68). This phenomenon was now further investigated using resealed human erythrocyte ghosts (ghosts), which can be maintained at a nonlytic osmotic steady state subsequent to C5b-9 binding: (1) The functional state of C5b-9-treated ghosts was studied from their ability to retain trapped [14C]-sucrose or [3H]-inulin when suspended either in the presence of Na+ or K+. A dramatic increase in the permeability of the ghost membrane to both nonelectrolytes-in the absence of significant hemoglobin release-was observed for C5b-9 assembly in the presence of external K+. (2) The physical binding of the individual125I-labeled terminal complement proteins to ghost membranes was directly measured as a function of intra- and extracellular K+ and Na+. The uptake of125I-C7,125I-C8, and125I-C9 into membrane C5b-9 was unaltered by substitution of Na+ by K+. (3) The binding of the terminal complement proteins to ghosts subjected to a transient membrane potential generated by the K+-ionophore valinomycin (in the presence of K+ concentration gradients) was measured. No significant change in membrane binding of any of the C5b-9 proteins was detected under the influence of both depolarizing and hyperpolarizing membrane potentials. It can be concluded that the differential effect of Na+ versus K+ upon the erythrocyte membrane isnot due to an effect upon the binding of the complement proteins to the membraneper se, but upon the functional properties of the assembled C5b-9 pore site.  相似文献   

11.
《Developmental biology》1987,122(2):432-438
The fertilization potential of the Pseudocentrotus depressus egg involved three transiently depolarizing components which had a different time course and a peak value. Three peaks were at less than 10 sec, 43 ± 4 sec (mean ± SD), and 182 ± 22 sec after the onset of the fertilization potential. Their peak values (mean ± SD) were 37 ± 4, 17 ± 3, and −31 ± 5 mV in standard artificial sea water. The effect of external ions on the membrane potential at the peak of the second component was measured with a conventional voltage-recording microelectrode. The peak value changed 51 mV with a 10-fold change in external Na+ concentration. However, it was about 65 mV more negative than the equilibrium potential of Na+, assuming that the internal Na+ concentration was 13.5 mM. H+, Ca2+, Mg2+, and Cl did not contribute to the peak value. The peak value was sensitive to the external K+ concentration. These data fitted a theoretical line obtained from the Goldman-Hodgkin-Katz equation, using a ratio of PNa:PK:PCl = 1.1:1.0:0. This means that the permeability to both Na+ and K+ is responsible for the second component of the fertilization potential. The fertilization potential was also measured in the artificial sea water containing Li+ or Cs+. The egg at the second component of the fertilization potential was almost equally permeable to Li+ as well as Na+ or K+ and somewhat permeable to Cs+. By contrast, the resting membrane potential before fertilization depended to a large extent upon K+ permeability.  相似文献   

12.
Summary Dinactin, an antibiotic forming complexes with K+ ions, uncouples phosphorylation in chloroplasts without requiring the presence of a substance increasing the permeability of the membrane for protons. To inhibit photophosphorylation, less Dinactin is necessary in the absence than in the presence of K+.When added before the light phase, Dinactin affects the light-triggered ATP-Pi exchange reaction in the same way as it does the complete photophosphorylation. Addition of the antibiotic after the activation by light inhibits the exchange reaction independently of the presence of K+, possibly by blocking the energy transfer to ATP.The inhibition of the light-induced proton transport by Dinactin is more pronounced in the presence of K+ than of Na+ ions. The manner in which changes in the permeability of the chloroplast membrane for K+ ions caused by Dinactin may influence photophosphorylation and reactions coupled with it is discussed.
Verwendete Abkürzungen ATP Adenosintriphosphat - ADP Adenosindiphosphat - Pa anorganisches Phosphat - PMS Phenazinmethosulfat - DCPIP Dichlorphenolindophenol - FeCy Ferricyanid - DNP Dinitrophenol - FCCP Carbonylcyanid-p-trifluormethoxyphenylhydrazon - SQ 15859 Squibb Compound 15859  相似文献   

13.
The evagination of imaginal disks of Drosophila melanogaster is induced in vitro by β-ecdysone and inhibited by juvenile hormone. The possibility that these hormones act by changing intracellular Na+ and K+ levels was investigated by studying their effects on the sodium-potassium dependent adenosinetriphosphatase (NaK ATPase), an enzyme with a major rôle in regulating Na+ and K+ levels in cells. We find that β-ecdysone has no effect on this enzyme and can induce evagination even when intracellular Na+ concentrations are increased 2 to 3 fold by ouabain. Juvenile hormone stimulates the enzyme, but still acts to inhibit evagination when NaK ATPase activity is inhibited by ouabain. We conclude that the actions of β-ecdysone and juvenile hormone on imaginal disk evagination do not directly involve the NaK ATPase or require specific changes in Na+ and K+ concentrations.  相似文献   

14.
In leech P neurons the inhibition of the Na+-K+ pump by ouabain or omission of bath K+ leaves the membrane potential unaffected for a prolonged period or even induces a marked membrane hyperpolarization, although the concentration gradients for K+ and Na+ are attenuated substantially. As shown previously, this stabilization of the membrane potential is caused by an increase in the K+ conductance of the plasma membrane, which compensates for the reduction of the K+ gradient. The data presented here strongly suggest that the increased K+ conductance is due to Na+-activated K+ (KNa) channels. Specifically, an increase in the cytosolic Na+ concentration ([Na+]i) was paralleled by a membrane hyperpolarization, a decrease in the input resistance (Rin) of the cells, and by the occurrence of an outwardly directed membrane current. The relationship between Rin and [Na+]i followed a simple model in which the Rin decrease was attributed to K+ channels that are activated by the binding of three Na+ ions, with half-maximal activation at [Na+]i between 45 and 70 mM. At maximum channel activation, Rin was reduced by more than 90%, suggesting a significant contribution of the KNa channels to the physiological functioning of the cells, although evidence for such a contribution is still lacking. Injection experiments showed that the KNa channels in leech P neurons are also activated by Li+.  相似文献   

15.
THE OSMOTIC BEHAVIOR OF ROD PHOTORECEPTOR OUTER SEGMENT DISCS   总被引:5,自引:3,他引:2       下载免费PDF全文
The permeability properties of frog rod photoreceptor outer segment discs were investigated in preparations of purified, dark-adapted, outer segment fragments by the techniques of direct volume measurement and electron microscopy. Outer segment discs were found to swell and contract reversibly in response to changes in the osmotic pressure of the bathing medium in accordance with the Boyle-van't Hoff law. By use of the criterion of reversible osmotic swelling, the disc membrane is impermeable to Na+, K+, Mg+2, Ca+2, Cl-, and (PO4)-3 ions, whereas it is freely permeable to ammonium acetate. The disc membrane is impermeable to sucrose, although its osmotic behavior towards this substance is different from its behavior towards impermeable ions. Electron microscopy showed that the osmotic effects on the rod outer segment fragments represent changes in the intradiscal volume. Fixation with glutaraldehyde did not abolish the permeability properties of the disc membrane, and fixed membranes were still capable of osmotic volume changes. It is concluded from this study that the frog's rod photoreceptor outer segment discs are free-floating membranous organelles with an inside space separate and distinct from the photoreceptor intracellular space.  相似文献   

16.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

17.
Mitochondrial swelling techniques were used to evaluate the effects of the aminoglycoside antibiotic gentamicin on renal cortical mitochondrial monovalent cation permeability. Gentamicin behaved like EDTA to enhance energy-dependent Na+- and K+-acetate uptake with a relatively greater effect on Na+-acetate uptake. Mg2+ prevented and reversed the effects of both EDTA and gentamicin. Neither agent affected energy-independent uptake of Na+ and K+-acetate. Gentamicin did not enhance energy-independent uptake of K+- and Na+-nitrate. Gentamicin enhanced energy-dependent swelling in a chloride- and phosphate-containing medium as a function of the medium Na+ and K+ concentration. This effect occurred simultaneously with gentamicin-induced stimulation of State 4 respiration and was blocked by Mg2+. Gentamicin did not affect phosphate transport. The results are taken to indicate a specific action of gentamicin to enhance mitochondrial monovalent cation permeability at an Mg2+-sensitive site and it is proposed that this accounts for the effects of gentamicin on mitochondrial respiration.  相似文献   

18.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

19.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

20.
Summary The cell membrane K+-activated phosphatase activity was measured in reconstituted ghosts of human red cells having different ionic contents and incubated in solutions of varying ionic composition. When K+-free ghosts are suspended in K+-rich media, full activation of the phosphatase is obtained. Conversely, very little ouabainsensitive activity is detected in K+-rich ghosts suspended in K+-free media. These results, together with the fact that Na+ competitively inhibits the effects of K+ only when present externally, show that the K+ site of the membrane phosphatase is located at the outer surface of the cell membrane. The Mg++ requirements for K+ activation of the membrane phosphatase are fulfilled by internal Mg++. Addition of intracellular Na+ to ATP-containing ghosts raises the apparent affinity of the enzyme for K+, suggesting that the sites where ATP and Na+ produce this effect are located at the inner surface of the cell membrane. The asymmetrical features of the membrane phosphatase are those expected from the proposed role of this enzyme in the Na+–K+-ATPase system.The authors are established investigators of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号