首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

2.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase activity is enhanced about 5 fold by 2 mM of either AMP or ADP. Activation constants, Ka, for AMP and ADP are 17 microM and 430 microM respectively, showing that AMP is a more potent activator than ADP. This property is expressed by increasing not only the rate of reductase inactivation but also the rate of reductase phosphorylation from [gamma-32P]ATP. GTP can replace ATP as substrate of reductase kinase but GMP and GDP cannot replace AMP as activators. Kinetic studies show that ATP can only act as a substrate. Nucleoside mono or diphosphates and nucleoside triphosphates, thus, appear to bind to different sites on microsomal HMG-CoA reductase kinase. Nucleoside mono or diphosphates act as allosteric activators of reductase kinase. The adenosyl moiety and the unaltered phosphate ester at the 5' position are two essential features of the activator molecule. Phosphorylation of reductase either by microsomal or cytosolic AMP-activated reductase kinase produces an 80% inactivation, with a concomitant incorporation of 0.8 mol of 32P per mol of reductase (Mr 55,000). In both cases exhaustive tryptic digestion of 32P-labeled HMG-CoA reductase, which had been denatured in 2M urea, yields two major phosphopeptides, the phosphoryl group being bound to serine residues.  相似文献   

3.
Acetate kinase (ATP:acetate phosphotransferase, EC 2.7.2.1) from Escherichia coli exhibited a time-dependent loss of activity when incubated with N-ethylmaleimide at micromolar concentrations. However, prolonged incubation did not eliminate all catalytic activity and generally about 15% of its initial activity remained. When incubated with 7.2 microM N-ethylmaleimide, acetate kinase was inactivated with a rate constant of 0.063 min-1. Adenine nucleotides, ATP, ADP and AMP, protected the enzyme against such inactivation, but acetate up to 3.0 M and in the presence of 0.2 M MgCl2 and acetyl phosphate at 24 mM did not interfere with the rate of inactivation. While both acetate and acetyl phosphate did not affect the protection rendered by AMP, the presence of acetyl phosphate altered ADP protection. However, both substrates prevented ATP from protecting the enzyme. These data suggest that the binding sites for acetate and acetyl phosphate are different from that of the adenosine binding domain, but are in close vicinity to the phosphoryl binding regions of the nucleotides.  相似文献   

4.
Escherichia coli acetate kinase (ATP: acetate phosphotransferase, EC 2.7.2.1.) was inactivated in the presence of either 2,3-butanedione in borate buffer or phenylglyoxal in triethanolamine buffer. When incubated with 9.4 mM phenylglyoxal or 5.1 mM butanedione, the enzyme lost its activity with an apparent rate constant of inactivation of 0.079 min-1, respectively. The loss of enzymatic activity was concomitant with the loss of an arginine residue per active site. Phosphorylated substrates of acetate kinase, ATP, ADP and acetylphosphate as well as AMP markedly decreased the rate of inactivation by both phenylglyoxal and butanedione. Acetate neither provided any protection nor affected the protection rendered by the adenine nucleotides. However, it interfered with the protection afforded by acetylphosphate. These data suggest that an arginine residue is located at the active site of acetate kinase and is essential for its catalytic activity, probably as a binding site for the negatively charged phosphate group of the substrates.  相似文献   

5.
R A Bednar 《Biochemistry》1990,29(15):3684-3690
The reactivity of simple alkyl thiolates with N-ethylmaleimide (NEM) follows the Br?nsted equation, log kS- = log G + beta pK, with G = 790 M-1 min-1 and beta = 0.43. The rate constant for the reaction of the thiolate of 2-mercaptoethanol with NEM is 10(7) M-1 min-1, whereas the rate constant for the reaction of the protonated thiol is less than 0.0002 M-1 min-1. The intrinsic reactivity of the protonated thiol (SH) is over (5 X 10(10]-fold less than the thiolate (S-) and makes a negligible contribution to the reactivity of thiols toward NEM. The rate of NEM modification of chalcone isomerase was conveniently measured by following the concomitant loss in enzymatic activity. The pseudo-first-order rate constants for inactivation show a linear dependence on the concentration of NEM up to 200 mM and yield no evidence for noncovalent binding of NEM to the enzyme. Evidence is presented demonstrating that the modification of chalcone isomerase by NEM is limited to a single cysteine residue over a wide range of pH. Kinetic protection against inactivation and modification by NEM is provided by competitive inhibitors and supports the assignment of this cysteine residue to be at or near the active site of chalcone isomerase. The pH dependence of inactivation of the enzyme by NEM indicates a pK of 9.2 for the cysteine residue in chalcone isomerase. At high pH, the enzymatic thiolate is only (3 X 10(-5))-fold as reactive as a low molecular weight alkyl thiolate of the same pK, suggesting a large steric inhibition of reaction on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP which reduces the Km of isocitrate. The new ADP analogue 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate (BDB-TADP) reacts irreversibly with the enzyme at pH 6.1 and 25 degrees C, causing a rapid loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and a slower inactivation measured using saturating isocitrate concentrations. The rate constant for loss of ADP activation exhibits a nonlinear dependence on BDB-TADP concentration; in the presence of 0.2 mM MnSO4, KI for the reversible enzyme-reagent complex is 0.069 mM with kmax at saturating reagent concentrations equal to 0.031 min-1. For reaction at the site causing overall inactivation, KI for the initial reversible enzyme-reagent complex is estimated to be 0.018 mM with kmax = 0.0083 min-1 in the presence of 0.2 mM MnSO4. Total protection against both reactions is provided by 1 mM ADP plus 0.2 mM MnSO4 or by 0.1 mM ADP plus 0.2 mM MnSO4 plus 0.2 mM isocitrate, but not by NAD, ATP, or ADP plus EDTA. The BDB-TADP thus appears to modify two distinct metal-dependent ADP-binding sites. Incubation of isocitrate dehydrogenase with 0.14 mM BDB-[beta-32P]TADP at pH 6.1 in the presence of 0.2 mM MnSO4 results in incorporation of 0.81 mol of reagent/mol of average subunit when the ADP activation is completely lost and the enzyme is 68% inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 0.5 mol of BDB-TADP/mol of average enzyme subunit causes complete loss of ADP activation, while reaction with another 0.5 mol of BDB-TADP would lead to total inactivation. The enzyme is composed of three distinct subunits in the approximate ratio 2 alpha:1 beta:1 gamma. The distribution of BDB-[beta-32P]TADP incorporated into modified enzyme is 63:30:7% for alpha:beta:gamma throughout the course of the reaction. These results indicate the 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate functions as an affinity label of two types of potential metal-dependent ADP sites of NAD-dependent isocitrate dehydrogenase and that these allosteric sites are present on two (alpha and beta) of the enzyme's three types of subunits.  相似文献   

7.
NADPH-cytochrome P-450 reductase (EC 1.6.2.4) purified from rat hepatic microsomal fraction was inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a specific agent for modification of carboxyl groups in a protein. The inactivation exhibited pseudo-first order kinetics with a reaction order approximately one and a second-order-rate constant of 0.60 M-1 min-1 in a high ionic strength buffer and 0.08 M-1 min-1 in a low ionic strength buffer. By treatment of NADPH-cytochrome P-450 reductase with EDC, the pI value changed to 6.5 from 5.0 for the native enzyme, and the reductase activity for cytochrome c, proteinic substrate, was strongly inactivated. When an inorganic substrate, K3Fe(CN)6, was used for assay of the enzyme activity, however, no significant inactivation by EDC was observed. The rate of inactivation by EDC was markedly but not completely decreased by NADPH. Also, the inactivation was completely prevented by cytochrome c, but not by K3Fe(CN)6 or NADH. The sulfhydryl-blocked enzyme prepared by treatment with 5,5'-dithio-bis(2-nitrobenzoic acid), which had no activity, completely recovered its activity in the presence of dithiothreitol. When the sulfhydryl-blocked enzyme was modified by EDC, the enzyme in which the carboxyl group alone was modified was isolated, and its activity was 35% of the control after treatment with dithiothreitol. In addition, another carboxyl reagent, N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K), decreased cytochrome c reductase activity of NADPH-cytochrome P-450 reductase. These results suggest that the carboxyl group of NADPH-cytochrome P-450 reductase from rat liver is located at or near active-site and plays a role in binding of cytochrome c.  相似文献   

8.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

9.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

10.
Glutathione reductase from Escherichia coli is inactivated when incubated with either NADPH or NADH. The process is inversely dependent on the enzyme concentration. Inactivation is rapid and monophasic with 1 microM NADPH and 1 nM enzyme FAD giving a t1/2 of 1 min. Complex formation between NADPH and the two-electron reduced enzyme (EH2) at higher levels of NADPH protects against rapid inactivation. NADP+, produced in a side reaction with oxygen, also protects by forming a complex with EH2. These complexes make analysis of the concentration dependence of the inactivation process difficult. Inactivation with NADH, where complexes do not interfere, is slower but can be analyzed more readily. With 152 microM NADH and 5.4 nM enzyme FAD, the time required for 50% inactivation is 17 min. The process is markedly biphasic, reaching the final inactivation level after 5-7 h. Analysis of the relationship between the final level of inactivation with NADH and the enzyme concentration indicates that inactivation is due to dissociation of the normally dimeric enzyme. Thus, the position of the dimer-monomer equilibrium between an active dimeric two-electron reduced species and an inactive monomeric two-electron reduced form determines the enzyme activity. An apparent equilibrium constant (Kd) for dissociation of dimer obtained from the anaerobic concentration dependent inactivation curves is 220 nM. Enzyme inactivated with NADH can be reactivated with glutathione, and the reactivation kinetics are second order, monomer-monomer over 75% of the reaction with an average apparent association rate constant (ka) of 13.1 (+/- 5.5) X 10(6) M-1 min-1.  相似文献   

11.
Fatty acid synthetase complex (Mr = 500,000) purified from pigeon liver homogenates is inactivated by phenylmethylsulfonyl fluoride. A well characterized inhibitor of serine esterases. Pseudounimolecular kinetics are followed at all inhibitor concentrations studied (0.05 to 1.0 mM). The second order rate constant obtained at pH 7.0, 30 degrees in 0.05 M potassium phosphate, 1 mM EDTA is 250 plus or minus 10 M-1 min-1 and appears to be independent of pH between 6 and 7.9. The inactivation of the enzyme complex appears to be selective since only one of the several component enzymes of fatty acid synthesis, palmityl-CoA deacylase, is inhibited. Acetyl- and malonyl-CoA-pantetheine transacylase activities as well as the kinetics of the reduction and dehydration steps are nearly identical for the native and the modified enzymes. The rate of approach of the condensation-CO2 exchange reaction (substrates: hexanoyl-CoA, malonyl-CoA, CoA, and H14CO3-) is slightly slower in the modified enzyme, though this change is not large enough to account for total loss of activity for fatty acid synthesis. The rate of loss of palmityl-CoA deacylase activity at a constant inhibitor concentration follows biphasic kinetics. Complete inactivation is achieved only after 2 mol of the inhibitor are bound per mol of the enzyme complex. Acetyl-, butyryl-, and hexanoyl-CoA thioesters (at 1.0 mM concentrations) protect the enzyme complex against inactivation by phenylmethylsulfonyl fluoride whereas CoA has no effect. Malonyl-CoA on the other hand, promotes inhibitor-mediated inactivation. Of the N-acetyl cysteamine derivatives tested, S-acetyl-N-acetyl cysteamine (at 10 mM) gives almost complete protection against inactivation whereas S-acetoacetyl-, S-beta-hydroxybutyryl-, and S-crotonyl-N-acetyl cysteamine thioesters exhibit either slight or no protection. These data demonstrate that phenylmethylsulfonyl fluoride is a selective reagent for the inactivation of functional fatty acyl deacylase component(s) of the pigeon liver fatty acid synthetase complex, and that it has no effect on malonyl or acetyl transacylases. The data are also in accord with the postulation that the inhibitor interacts at two catalytic centers of the enzyme complex. Furthermore, the patterns of protective effects shown by saturated acyl-CoA asters and malonyl-CoA point to different mechanisms of deacylation for these esters.  相似文献   

12.
All eukaryotic vacuolar (V-type) ATPases share the property of being inhibited by low concentrations (1-2 [mu]M) if N-ethylmaleimide (NEM). This distinguishes them from P-type ATPases, which are inhibited by higher concentrations of NEM (0.1-1 mM), and F-type ATPases, which are virtually resistant to inhibition by NEM. Using tonoplast vesicles from Beta vulgaris we have determined the kinetics of NEM inactivation of the V-type ATPase to be pseudo-first order. The concentration dependence of the reaction indicates interaction with a single class of inhibitory site with a rate constant of 4.1 x 104 M-1 min-1. Nucleotides protect against inactivation with an efficacy that agrees with their capacity to act as enzyme substrates. The dissociation constant for MgATP has been determined from protection experiments to be 0.44 mM, which is close to the observed Km for hydrolysis (0.39 mM). Likewise, the dissociation constant for protection by MgADP (127 [mu]M) is close to its inhibition constant as a competitive inhibitor (110 [mu]M). Taken together, these findings suggest that NEM inactivation is associated with nucleotide protectable exposure of a single cysteine residue on the catalytic subunit and confirm the utility of this residue for the determination of ligand dissociation constants through protection of maleimide inhibition.  相似文献   

13.
(Na+ + K+)-ATPase from beef brain and pig kidney are slowly inactivated by chromium(III) complexes of nucleotide triphosphates in the absence of added univalent and divalent cations. The inactivation of (Na+ + K+)-ATPase activity was accompanied by a parallel decrease of the associated K+-activated p-nitrophenylphosphatase and a parallel loss of the capacity to form, Na+-dependently, a phosphointermediate from [gamma-32P]ATP. The kinetics of inactivation and of phosphorylation with [gamma-32P]CrATP and [alpha-32P]CrATP are consistent with the assumption of the formation of a dissociable complex of CrATP with the enzyme (E) followed by phosphorylation of the enzyme: formula: (see text). The dissociation constant of the CrATP complex of the pig kidney enzyme at 37 degrees C was 43 microM. The inactivation rate constant (k + 2 = 0.033 min-1) was in the range of the dissociation rate constant kd of ADP from the enzyme of 0.011 min-1. The phosphoenzyme was unreactive towards ADP as well as to K+. No hydrolysis of the native isolated phosphoenzyme was observed within 6 h under a variety of conditions, but high concentrations of Na+ reactivated it slowly. The capacity of the Cr-phosphoenzyme of 121 +/- 18 pmol/unit enzyme is identical with the capacity of the unmodified enzyme to form, Na+-dependently, a phosphointermediate. The Cr-phosphoenzyme behaved after acid denaturation like an acylphosphate towards hydroxylamine, but the native phosphoenzyme was not affected by it. ATP protected the enzyme against the inactivation by CrATP (dissociation constant of the enzyme ATP complex = 2.5 microM) as well as low concentrations of K+. CrATP was a competitive inhibitor of (Na+ + K+)-ATPase. It is concluded that CrATP is slowly hydrolyzed at the ATP-binding site of (Na+ + K+)-ATPase and inactivates the enzyme by forming an almost non-reactive phosphoprotein at the site otherwise needed for the Na+-dependent proteinkinase reaction as the phosphate acceptor site.  相似文献   

14.
Catalytic reaction of the 2', 3'-dialdehyde analog of TPN (oTPN) with pig heart TPN-dependent isocitrate dehydrogenase in the presence of the substrate manganous isocitrate results in the formation of the dialdehyde derivative of TPNH (oTPNH). In the absence of the substrate, modification by oTPN leads to a progressive inactivation of the enzyme. The dependence of the pseudo-first order rate constants on the reagent concentration indicates the formation of a reversible complex with the enzyme prior to covalent modification (kmax = 5.5 X 10(-2) min-1; K1 = 290 microM). Reaction of [14C]oTPN with the enzyme results in the incorporation of 2 mol of oTPN/mol of peptide chain. No appreciable protection against either inactivation or incorporation by the natural ligands TPN and TPNH was obtained, suggesting different modes of binding of the analog in the presence and absence of the substrate isocitrate. Enzymatically synthesized oTPNH has been isolated and demonstrated to act as an affinity label for a TPNH-binding site of isocitrate dehydrogenase. The inactivation process exhibits saturation kinetics (kmax = 2.67 X 10(-3) min-1; K1 = 33 microM). Protection against activity loss, as well as a decrease in incorporation from 2 to 1 eq of [14C]oTPNH bound/peptide chain was observed in the presence of 1 mM TPNH. From the TPNH concentration dependence of the inactivation rate by oTPNH, a dissociation constant of 3.4 microM is calculated for TPNH, indicating binding of the analog to a specific TPNH-binding site on the enzyme. Although dialdehyde derivatives are frequently assumed to form Schiff bases with proteins, the evidence presented suggests the formation of morpholino derivatives as the products of the covalent reaction of isocitrate dehydrogenase with the dialdehyde derivatives of TPN and TPNH. The new reagent, oTPNH, may serve as an affinity label for other dehydrogenases.  相似文献   

15.
Oxidized glutathione inhibits acetate kinase (EC 2.7.2.1) of E. coli. The rate of inactivation depends on ATP concentration. The rate constant for the glutathione-induced inhibition is 0.17 min-1, Ki is 4.2 mM (pH 7.2, 25 degrees C). The inhibition of acetate kinase by glutathione is reversible, the equilibrium constant being equal to 4.4 or 0.09 at saturating concentrations of ATP (pH 8.0, 25 degrees C). The physiological level of reduced and oxidized glutathione can modulate the acetate kinase activity in vivo.  相似文献   

16.
Cytosols from 7, 12-dimethylbenz (alpha) anthracene-induced rat mammary tumors which exhibit different hormone-responsiveness were compared with respect to their cAMP-dissociation kinetics. At 22 degree C, pH 4.5, 1 micrometer cAMP, hormone-dependent mammary tumors exhibited monophasic dissociation rates with a rate constant of k-1 = 0.06 min-1. In contrast, hormone-independent mammary tumors exhibited biphasic dissociation curves with rate constants of k-1 = 0.47 and k-2 = 0.06 min-1. The binding of cAMP was completely reversible; radio-labeled ligand was completely dissociated by 1mM nonradioactive cAMP; the binding protein could be reassociated to its original binding level after dextran-coated charcoal adsorption. The mammary cytosols exhibited specific binding for cAMP which could be displaced partially by cGMP but not by ATP, ADP, AMP, or adenosine. Receptor inactivation during the course of incubation was negligible. Both mammary tissue cytosols exhibited similar association rates at 22 degree C, pH 4.5, 1 micrometer cAMP (k+1 = 5-7 x 10(5)M-1 min-1). These data indicate that mammary tissues exhibit 2 cAMP dissociation rates. Hormone-dependent mammary tumors exhibit a dissociation constant of a high affinity binding site (k-1/k+1 = 0.07 micrometer) whereas hormone-independent mammary tumors exhibit dissociation constants of one high affinity (k-1/k+1 = 0.07 micrometer) and a second low affinity site (k-1/k+1 = 0.05 micrometer).  相似文献   

17.
Chemical modification of rat hepatic NADPH-cytochrome P-450 reductase by sodium 2,4,6-trinitrobenzenesulfonate (TNBS) resulted in a time-dependent loss of the reducing activity for cytochrome c. The inactivation exhibited pseudo-first-order kinetics with a reaction order approximately one, and a second-order constant of 4.8 min-1 X M-1. The reducing activities for 2,6-dichloroindophenol and K3Fe(CN)6 were also decreased by TNBS. Almost complete protection of the NADPH-cytochrome P-450 reductase from inactivation by TNBS was achieved by NADP(H), while partial protection was obtained with a high concentration of NADH. NAD, FAD and FMN showed no effect against the inactivation. 3-Acetylpyridine-adenine dinucleotide phosphate, adenosine 2',5'-bisphosphate and 2'AMP protected the enzyme against the chemical modification. Stoichiometric studies showed that the complete inactivation was caused by modification of three lysine residues per molecule of the enzyme. But, under the conditions where the inactivation was almost protected by NADPH, two lysine residues were modified. From those results, we propose that one residue of lysine is located at the binding site of the 2'-phosphate group on the adenosine ribose of NADP(H), and plays an essential role in the catalytic function of the NADPH-cytochrome P-450 reductase.  相似文献   

18.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

19.
Inactivation of apo-glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase(phosphorylating) (EC 1.2.1.12) from rat skeletal muscle at 4 degrees C in 0.15 M NaC1, 5 mM EDTA, 4 mM 2-mercaptoethanol pH 7.2 is a first-order reaction. The rate constant of inactivation depends on protein concentration. With one molecule of NAD bound per tetrameric enzyme, a 50 per cent loss in activity is observed and the rate constant of inactivation becomes independent of the protein concentration over a 30-fold range. Two moles of NAD bound per mole of enzyme fully protect it against inactivation. NADH affords a cooperative effect on enzyme structure similar to that of NAD. Inactivation of 7.8 S apoenzyme is reflected in its dissociation into 4.8-S dimers. In the case of enzyme-NAD1 complex, no direct relationship between the extent of inactivation and dissociation is observed, suggesting that these two processes do not occur simultaneously; we may say that dissociation is slower than inactivation. A mechanism in which the rate-limiting step for inactivation is a conformational change in the tetramer occurring prior to dissociation and affecting only the structure of the non-liganded dimer, is consistent with the experimental observations. Inorganic phosphate protects apoenzyme against inactivation. Its effect is shown to be due to the anion binding at specific sites on the protein with a dissociation constant of 2.6 plus or minus 0.4 mM. The NaC1-induced cold inactivation of glyceraldehyde-phosphate dehydrogenase is fully reversible at 25 degrees C in the presence of 20 mM dithiothreitol and 50 mM inorganic phosphate. The rate of reactivation is independent of protein concentration. Inactivated enzyme retains the ability to bind specific antibodies produced in rabbits, but diminishes its precipitating capability.  相似文献   

20.
Pseudomonas Fe-superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) is inactivated by hydrogen peroxide by a mechanism which exhibits saturation kinetics. The pseudo-first-order rate constant of the inactivation increased with increasing pH, with an inflection point around pH 8.5. Two parameters of the inactivation were measured in the pH range 7.8 to 9.0; the total H2O2 concentration at which the enzyme is half-saturated (K inact) was found to be independent of pH (30 mM) and the maximum rate constant for inactivation (k max) increased progressively with increasing pH, from 3.3 min-1 at pH 7.8 to 21 min-1 at pH 9.0. This evidence suggests the presence of an ionization group (pKa approximately 8.5) which does not participate in the binding of H2O2 but which affects the maximum inactivation rate of the enzyme. The loss of dismutase activity of the Fe-superoxide dismutase is accompanied by a modification of 1.6, 1.1 and 0.9 residues of tryptophan, histidine and cysteine, respectively. Since the amino acid residues of the Cr-substituted enzyme, which has no enzymatic activity, were not modified by H2O2, the active iron of the enzyme is essential for the modification of the amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号