首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Voltage-dependent 45Ca2+ uptake into rat whole brain synaptosomes was measured after 3-s KCl-induced depolarization to investigate possible inhibitory effects of calcium antagonists, nitrendipine, nimodipine, and nisoldipine. At a Ca2+ concentration of 1.2 m M , nitrendipine, in concentrations ranging from 0.1 n M to 10 μ M , had no effect on 45Ca2+ uptake. When the Ca2+ concentration was lowered to 0.06 and 0.12 m M , nitrendipine, 10 μ M , inhibited 45Ca2+ uptake in response to 109 m M KCl depolarization. However, in a separate concentration response study, nitrendipine, nimodipine, and nisoldipine, 0.1 n M to 10 μ M , failed to alter the uptake of 45Ca2+ (0.06 m M Ca2+) into 30 m M KCl-depolarized synaptosomes. The high concentrations of these agents required to depress 45Ca2+ uptake indicate that the dihydropyridine calcium antagonists are considerably less potent in brain tissue than in peripheral tissue.  相似文献   

2.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

3.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

4.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

5.
Abstract: Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 μ M . Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 μ M ) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis, CaMK 281-309 strongly inhibited kinase activity (IC50=0.2 μ M ). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

6.
Abstract: Purified chromaffin granules from bovine adrenal medulla bound a small group of medullary cell cytosol proteins at micromolar levels of Ca2+ and physiological levels of K+, Mg2+, and Mg-ATP. The bound proteins had molecular weights of 33,000-37,000 and 70,000-71,000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and did not correspond with any previously reported cytosolic components of chromaffin cells. The new proteins were eluted from intact granules or resealed granule membranes at 0.1 μ M Ca2+; binding was half-maximal at 2.6 μ M . Adsorption and elution in this manner resulted in a high degree of purification of the new proteins that were minor components of the original cytosol. Partially purified fractions enriched in the 33,000-37,000 and 70,000-71,000 proteins bound 45Ca2+ at submicromolar levels in the presence of millimolar Mg2+. Calmodulin was also bound by the granule membranes and was present in trace amounts in cytosol eluates from granules, but it did not bind to the new proteins in the presence of calcium ions. The possible significance of the new proteins to calcium-mediated secretion from chromaffin cells is discussed.  相似文献   

7.
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 m m for 125I-transferrin and 1.0 m m for catecholamine, and the intracellular concentrations were 0.1 μ m and 1 μ m , respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 n m , and peaked at 1 μ m when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.  相似文献   

8.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

9.
Abstract: In this study we demonstrate that 50 mRS K+ stimulates the conversion of L-[3H] arginine to L-[3H] citrulline and that this effect is blocked by 10 μ M AT-nitro- l -arginine, a nitric oxide synthase inhibitor, and Ca2+-free conditions. Amiloride (1 m M ) and low Na+ conditions were used to test the possible involvement of the Na+-Ca2+ exchanger. These treatments were without effect. The calcium channel blockers 10 mRS Mg2+, 100 μ M Cd2+, and 10 mRS Co2+ also blocked the K+ response, suggesting the involvement of voltage-dependent calcium channels (VDCCs). The specific VDCC involved seems to be the P type, as funnel-web spider toxin blocked the response whereas 200 μ M Ni2+, 10 μ M nifedipine, and 100 n M ω-conotoxin did not.  相似文献   

10.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

11.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

12.
Abstract: The effect of the hydrolysis-resistant GTP analogs, guanosine 5'- O -(3-thiotriphosphate) (GTPγS) and guanylyl imidodiphosphate (GMPPNP), on norepinephrine (NE) secretion from digitonin-permeabilized rat pheochromocytoma cells, PC12, was examined. Although secretion in the presence of saturating Ca2+ (10 μ M ) was not affected by GTP7S or GMPPNP, secretion in the absence of Ca2+ was stimulated by these GTP analogs. Secretion induced by saturating concentrations of GTPγS or GMPPNP was approximately 80% of that induced by 10 μ M Ca2+. Half-maximum stimulation was induced by 30 μ M GTPγS or GMPPNP. Both Ca2+-stimulated and GTPγS-stimulated secretion were ATP dependent and inhibited by N -ethylmaleimide. The GTPγS-stimulated secretion of NE from permeabilized PC12 cells does not appear to result from either the release of Ca2+ or the activation of protein kinase C. Activation of protein kinase C by pretreatment of intact cells with 12- O -tetradecanoyl-phorbol 13-acetate caused a 50% increase in both Ca2+-stimulated and GTP7S-stimulated secretion. Cholera and pertussis toxins did not affect Ca2+-stimulated or GTPγS-stim-ulated NE secretion. Guanosine 5'- O -(2-thiodiphosphate) (GDPβS) and GTP inhibited GTPγS-stimulated secretion but not Ca2+-stimulated secretion. The inability of GDPβS to inhibit Ca2+-stimulated secretion indicates that the process affected by GTPγS is not an essential step in the Ca2+-stimulated pathway.  相似文献   

13.
An extract obtained from Cynops sperm induced the activation of both Cynops and Xenopus eggs with accompanying changes in the potential of the egg membrane that were quite similar to those caused by the Cynops sperm. The activation-inducing properties of the extract were abolished by treatment with proteinase K or by heating (60°C, 15 min) and were associated with a protease activity against peptidyl Arg-MCA substrates. The activation of Xenopus eggs by the extract was inhibited by those substrates, or by protease inhibitors, aprotinin or leupeptin. The protease activity was localized in the acrosomal region of Cynops sperm. The activation of Xenopus eggs by the extract was prevented when the exterior concentration of Ca2+ions, [Ca2+]0, was reduced to 1.5 μM, but it was enhanced when [Ca2+]0 was increased to 340 μM. The activation of Xenopus eggs by the extract was not affected by positive clamping when [Ca2+]0 was 340 μM. These results suggest that the sperm extract contains a protease that causes an increase in the influx of Ca2+ions that results in voltage-insensitive activation of the egg.  相似文献   

14.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

15.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

16.
Turgor- dependent membrane permeability in relation to calcium level   总被引:1,自引:0,他引:1  
The relationship between the inhibiting effect of Ca2+ and of low turgor pressure on K+ release from fresh-cut discs of carrot ( Daucus carota var. Nantes) storage tissue was studied. A range of Ca2+ concentrations in the tissue was obtained by adding 0.5 m M EDTA or CaSO4 at different concentrations to the medium. Calcium inhibited K+ release in fully turgid cells (2.5 μmol K+ g−1 h−1 in 0.5 m M EDTA vs 0.4 μmol K+ g−1 h−1 in 10 m M CaSO4). Less turgid cells, obtained by equilibration with 0.2 M mannitol, released K+ at only 30% of the rate of the turgid cells, yet the pattern of K+ release as a function of Ca2+ level was similar in both turgid and non-turgid cells. Removal of calcium by EDTA occasionally injured cell membranes in the fully turgid discs but never in the less turgid ones. In view of the additive effect of Ca2+ and low turgor on K+ release regardless of the treatment order, it is suggested that the two factors exert their effect on membrane permeability independently of each other.  相似文献   

17.
The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2)≈phosphatidylinositol 4-monophosphate>phosphatidylinositol≈phosphatidylserine≈phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 μ M ) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.  相似文献   

18.
Evidence has been obtained for the involvement of μ M levels of Ca2+ in phospholipid catabolism during petal senescence by following the breakdown of [U-14C]-phosphatidylcholine by microsomal membranes from cut carnation ( Dianthus caryophyllus L. cv. White-sim) flowers. Phospholipid degradation was mediated by three membrane-associated lipases, viz. phospholipase D (EC 3.1.4.4), phosphatidic acid phosphatase (EC 3.1.3.4) and lipolytic acyl hydrolase. The activities of phospholipase D and phosphatidic acid phosphatase were stimulated by 30 and 100%, respectively, in the presence of 40 μ M free Ca2+, and the Ca2+-stimulation of phosphatidic acid phosphatase was calmodulin-dependent. When L-3-phosphatidyl-[2-3H]-inositol and L-3-phosphatidyl-[N-methyl-3H]-choline were used as substrates, inositol and choline accounted for 95 and 99%, respectively, of the water-soluble radiolabelled products. This suggests a predominance of phospholipase D activity over phospholipase C activity in these membranes.
Breakdown of membrane phospholipids in senescing carnations is known to be accelerated by treatment of young flowers with ethylene. To determine whether this involves a specific turnover of phosphatidylinositol as observed in animal systems in response to certain agonists, young flowers pre-labelled with 32PO3-4 were treated with 10 ppm ethylene. All phospholipids incorporated the label, but no enhanced turnover of phosphatidylinositol was observed. Inositol 1,4,5-triphosphate did not release Ca2+ from preloaded microsomal vesicles at concentrations known to be effective in animal systems (i.e. < 5 μ M ) although release of Ca2+ was observed when a higher (20 μ M ) concentration was used.  相似文献   

19.
Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W ), staurosporine (1μ M ), and K252a(1μ M ), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.  相似文献   

20.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号