首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
BACKGROUND: The coxsackievirus and adenovirus receptor (CAR) comprises two extracellular immunoglobulin domains, a transmembrane helix and a C-terminal intracellular domain. The amino-terminal immunoglobulin domain (D1) of CAR is necessary and sufficient for adenovirus binding, whereas the site of coxsackievirus attachment has not yet been localized. The normal cellular role of CAR is currently unknown, although CAR was recently proposed to function as a homophilic cell adhesion molecule. RESULTS: The human CAR D1 domain was bacterially expressed and crystallized. The structure was solved by molecular replacement using the structure of CAR D1 bound to the adenovirus type 12 fiber head and refined to 1.7 A resolution, including individual anisotropic temperature factors. The two CAR D1 structures are virtually identical, apart from the BC, C"D, and FG loops that are involved both in fiber head binding and homodimerization in the crystal. Analytical equilibrium ultracentrifugation shows that a dimer also exists in solution, with a dissociation constant of 16 microM. CONCLUSIONS: The CAR D1 domain forms homodimers in the crystal using the same GFCC'C" surface that interacts with the adenovirus fiber head. The homodimer is very similar to the CD2 D1-CD58 D1 heterodimer. CAR D1 also forms dimers in solution with a dissociation constant typical of other cell adhesion complexes. These results are consistent with reports that CAR may function physiologically as a homophilic cell adhesion molecule in the developing mouse brain. Adenovirus may thus have recruited an existing and conserved interaction surface of CAR to use for its own cell attachment.  相似文献   

2.
The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered.  相似文献   

3.
Uniquely amongst vitamin K-dependent coagulation proteins, protein C interacts via its Gla domain both with a receptor, the endothelial cell protein C receptor (EPCR), and with phospholipids. We have studied naturally occurring and recombinant protein C Gla domain variants for soluble (s)EPCR binding, cell surface activation to activated protein C (APC) by the thrombin-thrombomodulin complex, and phospholipid dependent factor Va (FVa) inactivation by APC, to establish if these functions are concordant. Wild-type protein C binding to sEPCR was characterized with surface plasmon resonance to have an association rate constant of 5.23 x 10(5) m(-1).s(-1), a dissociation rate constant of 7.61 x 10(-2) s(-1) and equilibrium binding constant (K(D)) of 147 nm. It was activated by thrombin over endothelial cells with a K(m) of 213 nm and once activated to APC, rapidly inactivated FVa. Each of these interactions was dramatically reduced for variants causing gross Gla domain misfolding (R-1L, R-1C, E16D and E26K). Recombinant variants Q32A, V34A and D35A had essentially normal functions. However, R9H and H10Q/S11G/S12N/D23S/Q32E/N33D/H44Y (QGNSEDY) variants had slightly reduced (< twofold) binding to sEPCR, arising from an increased rate of dissociation, and increased K(m) (358 nm for QGNSEDY) for endothelial cell surface activation by thrombin. Interestingly, these variants had greatly reduced (R9H) or greatly enhanced (QGNSEDY) ability to inactivate FVa. Therefore, protein C binding to sEPCR and phospholipids is broadly dependent on correct Gla domain folding, but can be selectively influenced by judicious mutation.  相似文献   

4.
Adenovirus fibers from most serotypes bind the D1 domain of coxsackie and adenovirus receptor (CAR), although the binding residues are not strictly conserved. To understand this further, we determined the crystal structures of canine adenovirus serotype 2 (CAV-2) and the human adenovirus serotype 37 (HAd37) in complex with human CAR D1 at 2.3 and 1.5A resolution, respectively. Structure comparison with the HAd12 fiber head-CAR D1 complex showed that the overall topology of the interaction is conserved but that the interfaces differ in number and identity of interacting residues, shape complementarity, and degree of conformational adaptation. Using surface plasmon resonance, we characterized the binding affinity to CAR D1 of wild type and mutant CAV-2 and HAd37 fiber heads. We found that CAV-2 has the highest affinity but fewest direct interactions, with the reverse being true for HAd37. Moreover, we found that conserved interactions can have a minor contribution, whereas serotype-specific interactions can be essential. These results are discussed in the light of virus evolution and design of adenovirus vectors for gene transfer.  相似文献   

5.
Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.  相似文献   

6.
The majority of adenovirus serotypes can bind to the coxsackievirus and adenovirus receptor (CAR) on human cells despite only limited conservation of the amino acid residues that comprise the receptor-binding sites of these viruses. Using a fluorescence anisotropy-based assay, we determined that the recombinant knob domain of the fiber protein from adenovirus serotype (Ad) 2 binds the soluble, N-terminal domain (domain 1 (D1)) of CAR with 8-fold greater affinity than does the recombinant knob domain from Ad12. Homology modeling predicted that the increased affinity of Ad2 knob for CAR D1 could result from additional contacts within the binding interface contributed by two residues, Ser408 and Tyr477, which are not conserved in the Ad12 knob. Consistent with this structural model, substitution of serine and tyrosine for the corresponding residues in the Ad12 knob (P417S and S489Y) increased the binding affinity by 4- and 8-fold, respectively, whereas the double mutation increased binding affinity 10-fold. X-ray structure analysis of Ad12 knob mutants P417S and S489Y indicated that both substituted residues potentially could form additional hydrogen bonds across the knob-CAR interface. Structural changes resulting from these mutations were highly localized, implying that the high tolerance for surface variation conferred by the stable knob scaffold can minimize the impact of antigenic drift on binding specificity and affinity during evolution of virus serotypes. Our results suggest that the interaction of knob domains from different adenovirus serotypes with CAR D1 can be accurately modeled using the Ad12 knob-CAR D1 crystal structure as a template.  相似文献   

7.
Most members of the tumor necrosis factor ligand family form noncovalently linked homotrimers, capable to bind up to three molecules of the respective membrane receptors. For several receptors a membrane distal homophilic interaction domain has been identified, called pre-ligand binding assembly domain. Accordingly, affinity values determined by typical equilibrium binding studies are likely to be influenced by avidity effects. Using our recently introduced covalently stabilized TNF (single chain TNF, scTNF), we have here investigated receptor–ligand binding stoichiometry in our well characterized system of TNFR–Fas chimeras. We produced scTNF derivatives with functionally deleted individual receptor binding sites, resulting in TNF mutants capable to only bind to one or two receptor molecules, rather than three. Equilibrium binding affinity studies on ice with these molecules revealed no significant changes after a single receptor binding site had been functionally deleted. In contrast, functional abrogation of two receptor binding sites showed a strong decrease in both, affinity and bioactivity on TNFR2–Fas. In contrast, TNFR1–Fas ligand binding and receptor activation was only affected after functional deletion of all three receptor binding sites. Our data demonstrate pivotal differences in ligand/receptor interactions between TNFR1–Fas and TNFR2–Fas, arguing for avidity effects important for TNF binding and downstream signaling of TNFR2, but to a lesser extent of TNFR1. These results are supported by data revealed from chemical crosslinking experiments suggesting the existence of preformed TNFR–Fas homodimers.  相似文献   

8.
Microfibrils and elastin are major constituents of elastic fibers, the assembly of which is dictated by multimolecular interactions. Microfibril-associated glycoprotein-1 (MAGP-1) is a microfibrillar component that interacts with the soluble elastin precursor, tropoelastin. We describe here the adaptation of a solid-phase binding assay that defines the effect of divalent cations on the interactions between MAGP-1 and tropoelastin. Using this assay, a strong calcium-dependent interaction was demonstrated, with a dissociation constant of 2.8 +/- 0.3 nm, which fits a single-site binding model. Manganese and magnesium bestowed a weaker association, and copper did not facilitate the protein interactions. Three constructs spanning tropoelastin were used to quantify their relative contributions to calcium-dependent MAGP-1 binding. Binding to a construct spanning a region from the N-terminus to domain 18 followed a single-site binding model with a dissociation constant of 12.0 +/- 2.2 nm, which contrasted with the complex binding behavior observed for fragments spanning domains 17-27 and domain 27 to the C-terminus. To further elucidate binding sites around the kallikrein cleavage site of domains 25/26, MAGP-1 was presented with constructs containing C-terminal deletions within the region. Construct M1659, which spans a region from the N-terminus of tropoelastin to domain 26, inclusive, bound MAGP-1 with a dissociation constant of 9.7 +/- 2.0 nm, which decreased to 4.9 +/- 1.0 nm following the removal of domain 26 (M155n), thus displaying only half the total capacity to bind MAGP-1. These results demonstrate that MAGP-1 is capable of cumulative binding to distinct regions on tropoelastin, with different apparent dissociation constants and different amounts of bound protein.  相似文献   

9.
The dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin binding receptor (DC-SIGN) was shown to bind human immunodeficiency virus type 1 (HIV-1) viral envelope protein gp120 and proposed to function as a Trojan horse to enhance trans-virus infection to host T cells. To better understand the mechanism by which DC-SIGN and DC-SIGNR selectively bind HIV-1 gp120, we constructed a series of deletion mutations in the repeat regions of both receptors. Different truncated receptors exist in different oligomeric forms. The carbohydrate binding domain without any repeats was monomeric, whereas the full extracellular receptors existed as tetramers. All reconstituted receptors retained their ability to bind gp120. The dissociation constant, however, differed drastically from micromolar values for the monomeric receptors to nanomolar values for the tetrameric receptors, suggesting that the repeat region of these receptors contributes to the avidity of gp120 binding. Such oligomerization may provide a mechanism for the receptor to selectively recognize pathogens containing multiple high-mannose-concentration carbohydrates. In contrast, the receptors bound to ICAMs with submicromolar affinities that are similar to those of two nonspecific cell surface glycoproteins, FcgammaRIIb and FcgammaRIII, and the oligomerization of DC-SIGNR resulted in no increase in binding affinity to ICAM-3. These findings suggest that DC-SIGN may not discriminate other cell surface glycoproteins from ICAM-3 binding. The pH dependence in DC-SIGN binding to gp120 showed that the receptor retained high-affinity gp120 binding at neutral pH but lost gp120 binding at pH 5, suggesting a release mechanism of HIV in the acidic endosomal compartment by DC-SIGN. Our work contradicts the function of DC-SIGN as a Trojan horse to facilitate HIV-1 infection; rather, it supports the function of DC-SIGN/R (a designation referring to both DC-SIGN and DC-SIGNR) as an antigen-capturing receptor.  相似文献   

10.
《Journal of molecular biology》2019,431(24):4784-4795
Multidomain proteins often interact through several independent binding sites connected by disordered linkers. The architecture of such linkers affects avidity by modulating the effective concentration of intramolecular binding. The linker dependence of avidity has been estimated theoretically using simple physical models, but such models have not been tested experimentally because the effective concentrations could not be measured directly. We have developed a model system for bivalent protein interactions connected by disordered linkers, where the effective concentration can be measured using a competition experiment. We characterized the bivalent protein interactions kinetically and thermodynamically for a variety of linker lengths and interaction strengths. In total, this allowed us to critically assess the existing theoretical models of avidity in disordered, multivalent interactions. As expected, the onset of avidity occurs when the effective concentration reached the dissociation constant of the weakest interaction. Avidity decreased monotonously with linker length, but only by a third of what is predicted by theoretical models. We suggest that the length dependence of avidity is attenuated by compensating mechanisms such as linker interactions or entanglement. The direct role of linkers in avidity suggests they provide a generic mechanism for allosteric regulation of disordered, multivalent proteins.  相似文献   

11.
Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.  相似文献   

12.
The adenovirus (Ad) fiber protein mediates Ad binding to the coxsackievirus and Ad receptor (CAR) and is thus a major determinant of viral tropism. The fiber contains three domains: an N-terminal tail that anchors the fiber to the viral capsid, a central shaft region of variable length and flexibility, and a C-terminal knob domain that binds to cell receptors. Ad type 37 (Ad37), a subgroup D virus associated with severe ocular infections, is unable to use CAR efficiently to infect host cells, despite containing a CAR binding site in its fiber knob. We hypothesized that the relatively short, inflexible Ad37 fiber protein restricts interactions with CAR at the cell surface. To test this hypothesis, we analyzed the infectivity and binding of recombinant Ad particles containing modified Ad37 or Ad5 fiber proteins. Ad5 particles equipped with a truncated Ad5 fiber or with a chimeric fiber protein comprised of the Ad5 knob fused to the short, rigid Ad37 shaft domain had significantly reduced infectivity and attachment. In contrast, placing the Ad37 knob onto the long, flexible Ad5 shaft allowed CAR-dependent virus infection and cell attachment, demonstrating the importance of the shaft domain in receptor usage. Increasing fiber rigidity by substituting the predicted flexibility modules in the Ad5 shaft with the corresponding regions of the rigid Ad37 fiber dramatically reduced both virus infection and cell attachment. Cryoelectron microscopy (cryo-EM) single-particle analysis demonstrated the increased rigidity of this chimeric fiber. These studies demonstrate that both length and flexibility of the fiber shaft regulate CAR interaction and provide a molecular explanation for the use of alternative receptors by subgroup D Ad with ocular tropism. We present a molecular model for Ad-CAR interactions at the cell surface that explains the significance of fiber flexibility in cell attachment.  相似文献   

13.

Background

Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.

Methods

A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.

Results

Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.

Conclusions

High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.  相似文献   

14.
Adenovirus binds to mammalian cells via interaction of fiber with the coxsackie-adenovirus receptor (CAR). Redirecting adenoviral vectors to enter target cells via new receptors has the advantage of increasing the efficiency of gene delivery and reducing nonspecific transduction of untargeted tissues. In an attempt to reach this goal, we have produced bifunctional molecules with soluble CAR (sCAR), which is the extracellular domain of CAR fused to peptide-targeting ligands. Two peptide-targeting ligands have been evaluated: a cyclic RGD peptide (cRGD) and the receptor-binding domain of apolipoprotein E (ApoE). Human diploid fibroblasts (HDF) are poorly transduced by adenovirus due to a lack of CAR on the surface. Addition of the sCAR-cRGD or sCAR-ApoE targeting protein to adenovirus redirected binding to the appropriate receptor on HDF. However, a large excess of the monomeric protein was needed for maximal transduction, indicating a suboptimal interaction. To improve interaction of sCAR with the fiber knob, an isoleucine GCN4 trimerization domain was introduced, and trimerization was verified by cross-linking analysis. Trimerized sCAR proteins were significantly better at interacting with fiber and inhibiting binding to HeLa cells. Trimeric sCAR proteins containing cRGD and ApoE were more efficient at transducing HDF in vitro than the monomeric proteins. In addition, the trimerized sCAR protein without targeting ligands efficiently blocked liver gene transfer in normal C57BL/6 mice. However, addition of either ligand failed to retarget the liver in vivo. One explanation may be the large complex size, which serves to decrease the bioavailability of the trimeric sCAR-adenovirus complexes. In summary, we have demonstrated that trimerization of sCAR proteins can significantly improve the potency of this targeting approach in altering vector tropism in vitro and allow the efficient blocking of liver gene transfer in vivo.  相似文献   

15.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

16.
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion.  相似文献   

17.
The extracellular region of the coxsackievirus and adenovirus receptor (CAR) is predicted to consist of two immunoglobulin (Ig)-related structural domains. We expressed the isolated CAR amino-terminal domain (D1) and a CAR fragment containing both extracellular Ig domains (D1/D2) in Escherichia coli. Both D1 and D1/D2 formed complexes in vitro with the recombinant knob domain of adenovirus type 12 (Ad12) fiber, and D1 inhibited adenovirus type 2 (Ad2) infection of HeLa cells. These results indicate that the adenovirus-binding activity of CAR is localized in the amino-terminal IgV-related domain and confirm our earlier observation that Ad2 and Ad12 bind to the same cellular receptor. Preliminary crystallization studies suggest that complexes of Ad12 knob bound to D1 will be suitable for structure determination.  相似文献   

18.
PDZ10 is the 10th of 13 PDZ domains found within MUPP1, a cytoplasmic scaffolding protein first identified as an endogenous binding partner of serotonin receptor type 2c (5HT2c). This association, as with those of several other interacting proteins that have subsequently been identified, is mediated through the C-terminal tail of the PDZ domain partner. Using isothermal titration calorimetry (ITC), we measured the thermodynamic binding parameters [changes in Gibbs free energy (DeltaG), enthalpy (DeltaH) and entropy (TDeltaS)] of the isolated PDZ10 domain for variable-length N-acetylated peptides from the 5HT2c serotonin receptor C-terminal sequence, as well as for octapeptides of eight other putative partner proteins of PDZ10 (5HT2a, hc-kit, hTapp1, mTapp2, TARP, NG2, claudin-1, and HPV-18 E6). In length dependence studies of the 5HT2c sequence, the maximal affinity of the peptides leveled off rapidly and further elongation did not significantly improve the dissociation constant (Kd) of 11 microM observed with the pentapeptide. Among the native partners of PDZ10, octapeptides derived from the hc-kit and 5HT2c proteins were the strongest binders, with Kd values of 5.2 and 8.5 microM, respectively. The heat capacity change (DeltaCp) for the 5HT2c octapeptide was determined to be -94 cal/mol, and a calculated estimate indicates burial of polar and apolar surface areas in equal measure upon ligand binding. Peptides with phosphoserine at either the P-1 or P-2 position experienced decreased affinity, which is in accord with the hypothesis that reversible phosphorylation is a possible mechanism for regulating PDZ domain-mediated interactions. Additionally, two conformationally constrained side chain-bridged cyclic peptide ligands were also designed, prepared, evaluated by ITC, and shown to bind PDZ10 primarily through a favorable change in entropy.  相似文献   

19.
The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction.  相似文献   

20.
Lauer S  Goldstein B  Nolan RL  Nolan JP 《Biochemistry》2002,41(6):1742-1751
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号