共查询到20条相似文献,搜索用时 15 毫秒
1.
R O Ebanks A S Jaikaran M C Carroll M J Anderson R D Campbell D E Isenman 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(9):2803-2811
In general, C4A allotypes of human C4 show one-fourth to one-third the hemolytic activity of C4B allotypes. An exception to this rule is C4A6 which is almost totally deficient in hemolytic activity. Previous studies have localized the defect in C4A6 to the C5 convertase stage. Of the two critical events required for C5 cleavage, namely formation of a covalent adduct between C3b and the C4b subunit of the C3 convertase (C4b2a), and binding of C5 to this C4b-C3b complex, it is a defect in the latter step that accounts for the aberrant activity of C4A6. DNA sequencing studies described in a companion paper have suggested that the sole C4A6-specific difference was a Trp for Arg replacement at beta-chain residue 458. To directly ascertain whether this single substitution was responsible for the hemolytic defect in C4A6, we have used site-directed mutagenesis to introduce this change into both C4A and C4B cDNA expression plasmids. We found that the R to W replacement totally abrogated hemolytic activity. However, irrespective of the amino acid at residue 458, the mutant proteins behaved like their wild-type counterparts with respect to covalent binding to C1-bearing targets, i.e., the C4B recombinants displayed higher binding to sheep and human red cells than did the C4A counterparts. Furthermore, the mutants were able to form covalent C4b-C3b adducts. There was, however, substantially less C5 cleavage produced by cell-bound C4boxy23b complexes made with R458W mutant C4B than with wild-type C4B. These results are consistent with the sole defect in the mutants being at the C5 binding stage and strongly suggest that Arg 458 of the C4 beta-chain contributes to the C5 binding site of the molecule. 相似文献
2.
The conversion of human complement component C5 into fragment C5b by the alternative-pathway C5 convertase. 下载免费PDF全文
R G DiScipio 《The Biochemical journal》1981,199(3):497-504
The cleavage of human complement component C5 to fragment C5b by the alternative pathway C5 convertase was studied. The alternative-pathway C5 convertase on zymosan can be represented by the empirical formula zymosan--C3b2BbP. Both properdin-stabilized C3 and C5 convertase activities decay with a half life of 34 min correlating with the loss of the Bb subunit. The C5 convertase functions in a stepwise fashion: first, C5 binds to C3b and this is followed by cleavage of C5 to C5b. The capacity to bind C3b is a stable feature of component C5, as C5b also has this binding capacity. Component C5, unlike component C3, does not form covalent bonds with zymosan after activation, and C5 is not inhibited by amines. Therefore C5, although similar in structure to C3, does not appear to contain the internal thioester group reported for C3 and C4. 相似文献
3.
P Mathias D C Shreffler N R Cooper R T Ogata 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(2):607-609
C4d.1 and C4d.2 are serologically defined allotypes of murine complement component C4. Previous studies in Shreffler's laboratory have shown that the structural difference between the two allotypes lies within a single tryptic peptide of the C4 alpha-chain and that the sequences of this fragment from the two allotypes (determined from nucleic acid sequences of genomic clones) differ only by the substitution of arginine in C4d.2 for glutamine in C4d.1. Hence this single amino acid change apparently is responsible for the rather striking serological difference between the two allotypes. To test this conclusion, we have used site-specific mutagenesis to alter the sequence of a full-length C4 cDNA that was derived from a mouse strain expressing the C4d.2 allotype. We substituted a glutamine codon for the arginine codon at the specified site and expressed both mutant and parent recombinant C4 proteins by transient transfection of COS cells. We found that an alloantiserum specific for C4d.1 reacts with the mutant protein but not the parent whereas an alloantiserum specific for C4d.2 reacts with the parent protein, as expected, but not the mutant. These results confirm that a single amino acid difference specifies the C4d.1 and C4d.2 allotypes. 相似文献
4.
The molecular architecture of human complement component C6 总被引:7,自引:0,他引:7
The molecular architecture of human complement component C6 was elucidated at several levels of structural organization. The entire primary structure of C6 was determined by sequencing C6 cDNA that was cloned from a human liver lambda gt11 library. The polypeptide chain of C6 contains 913 amino acids. The protein is homologous with the other terminal components of complement, C7-C9. Specifically, C6 has 29% of its residues identical with C7, and 55 of the 56 cysteines found in C7 match those in C6. The C6 polypeptide chain is cross-linked by 32 disulfide bonds, and most of the cysteines are located in short (34-77 amino acids) discrete segments that exhibit homology with a wide variety of other proteins such as thrombospondin, the low density lipoprotein receptor, epidermal growth factor, and complement factors H and I. C6 is a glycoprotein, and it has two oligosaccharide groups attached to asparagines located near the amino and the carboxyl termini of the molecule. The organization of secondary structural elements in C6 was elucidated using circular dichroism spectroscopy and an empirical method based on sequence analysis. C6 has an estimated 12% alpha-helix, but is comparatively richer in beta-sheet (29%) and beta-turns (21%). Most of the predicted alpha-helical structure resides in a portion of the polypeptide chain that is free of cysteine and which shares homology with C9 and perforin. The tertiary structure of the C6 molecule was visualized by transmission electron microscopy; it has a sickle shape with dimensions of 144 x 66 A. The combined results are discussed and comparisons made with the other late acting components of complement and perforin. 相似文献
5.
Polymorphism of human complement component C4 总被引:10,自引:0,他引:10
An assessment has been made of the polymorphism of human complement component C4 by comparing derived amino acid sequences of cDNA and genomic DNA with limited amino acid sequences. In all, one complete and six partial sequences have been obtained from material from three individuals and include two C4A and two C4B alleles. Differences were found between the 4 alleles from 2 loci in only 15 of the 1722 amino acid residues, and 12 lie within one section of 230 residues, which in 1 allele also contains a 3-residue deletion. In three variable positions, an allelic difference in one C4 type was common to the other types. Three nucleotide differences were found in four introns. In spite of marked differences in their chemical reactivity, the many allelic forms appear to differ in less than 1% of their amino acid residue positions. This unusual pattern of polymorphism may be due to recent duplication of the C4 gene, or may have arisen by selection as a result of the biological role of C4, which interacts in the complement sequence with nine other proteins necessitating conservation of much of the surface structure. 相似文献
6.
The complement component C4 of mammals. 总被引:6,自引:0,他引:6
Human complement component C4 is coded by tandem genes located in the HLA class III region. The products of the two genes, C4A and C4B, are different in their activity. This difference is due to a degree of 'substrate' specificity in the covalent binding reactions of the two isotypes. Mouse also has a duplicated locus, but only one gene produces active C4, while the other codes for the closely related sex-limited protein (Slp). In order to gain some insight into the evolutionary history of the duplicated C4 locus, we have purified C4 from a number of other mammalian species, and tested their binding specificities. Like man, chimpanzee and rhesus monkey appear to produce two C4 types with reactivities similar to C4A and C4B. Rat, guinea pig, whale, rabbit, dog and pig each expresses C4 with a single binding specificity, which is C4B-like. Sheep and cattle express two C4 types, one C4B-like, the other C4A-like, in their binding properties. These results suggest that more than one locus may be present in these species. If this is so, then the duplication of the C4 locus is either very ancient, having occurred before the divergence of the modern mammals, or there have been three separate duplication events in the lines leading to the primates, rodents and ungulates. 相似文献
7.
The binding of human complement component C4 to antibody-antigen aggregates. 总被引:7,自引:3,他引:7 下载免费PDF全文
The binding of human complement component C4 to antibody-antigen aggregates and the nature of the interaction have been investigated. When antibody-antigen aggregates with optimal C1 bound are incubated with C4, the C4 is rapidly cleaved to C4b, but only a small fraction (1-2%) is bound to the aggregates, the rest remaining in the fluid phase as inactive C4b. It has been found that C4b and th antibody form a very stable complex, due probably to the formation of a covalent bond. On reduction of the C4b-immunoglobulin G (IgG) complex, the beta and gamma chains, but not the alpha' chain, of C4b are released together with all the light chain, but only about half of the heavy chain of IgG. The reduced aggregates contain two main higher-molecular-weight complexes, one shown by the use of radioactive components to contain both IgG and C4b and probably therefore the alpha' chain of C4b and the heavy chain of IgG, and the other only C4b and probably an alpha' chain dimer. The aggregates with bound C1 and C4b show maximal C3 convertase activity, in the presence of excess C2, when the alpha'-H chain component is in relatively highest amounts. When C4 is incubated with C1s in the absence of aggregates, up to 15% of a C4b dimer is formed, which on reduction gives an alpha' chain complex, probably a dimer. The apparent covalent interaction between C4b and IgG and between C4b and other C4b molecules cannot be inhibited by iodoacetamide and hence cannot be catalysed by transglutaminase (factor XIII). The reaction is, however, inhibited by cadaverine and putrescine and 14C-labelled putrescine is incorporated into C4, again by a strong, probably covalent, bond. It is suggested that a reactive group, possibly an acyl group, is generated when C4 is activated by C1 and that this reactive group can react with IgG, with another C4 molecule, or with water. 相似文献
8.
The origin of the very variable haemolytic activities of the common human complement component C4 allotypes including C4-A6. 总被引:7,自引:0,他引:7 下载免费PDF全文
The human complement component C4 occurs in many different forms which show big differences in their haemolytic activities. This phenomenon seems likely to be of considerable importance both physiologically and pathologically. C4 is coded by duplicated genes between HLA-D and HLA-B loci in the major histocompatibility complex in man. Several fold differences in haemolytic activity between products of the two loci C4-A and C4-B have been correlated with changes of six amino acid residues in this large protein of 1722 residues and with differences of several fold in the covalent binding of C4 to antibody-antigen aggregates. Some allotypes of one locus also differ markedly, notably C4-A6 which has 1/10th the haemolytic activity of other C4-A allotypes. A monoclonal antibody affinity column has been prepared which is able to separate C4-A from C4-B proteins and, using serum from an individual expressing only the C4-A6 allele at the C4-A locus, C4-A6 protein has been prepared. Investigation has shown C4-A6 to have the same reactivity as other C4-A allotypes except in the formation of the complex protease, C5 convertase. This protease is formed from C4, C2 and C3 and if C4-A6 is used it has approximately 1/5th the catalytic activity compared with other C4-A allotype. Allelic differences in sequence identified in C4 proteins so far are few and it is probable that the big difference in catalytic activity of C5 convertase is caused by very small changes in structure. 相似文献
9.
M J Anderson C M Milner R G Cotton R D Campbell 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(9):2795-2802
The C4A6 allotype of the human complement component C4 is known to be defective in C5 binding within the C5 convertase. To characterize the position and nature of the molecular defect in the C4A6 allotype we have isolated the C4A6 gene from a cosmid genomic DNA library. Direct sequencing of a 4.4-kb region of the gene covering exons 17 to 31 and encoding the C4d fragment and most of the rest of the alpha chain of C4 revealed that the C4A6 allele encodes the A isotypic residues Pro Cys-Leu Asp at positions 1101, 1102, 1105, and 1106 and the same residues as the C4A3 alpha gene at the polymorphic positions 1054 (Asp), 1157 (Asn), 1182 (Thr), 1188 (Val), 1191 (Leu) and 1267 (Ala). In addition the C4A6 allele was shown to encode a Pro at the previously characterized polymorphic position 707 in the C4a peptide where the C4A3 alpha allele encodes a Leu. The remaining 26 exons of the C4A6 gene were analyzed by detecting nucleotide mismatches in C4A6/C4A3 and C4A6/C4B1 DNA heteroduplexes using the chemical cleavage of mismatch technique. The regions around detected mismatches were sequenced. In total seven nucleotide differences were defined on comparison of the C4A6 and other C4 sequences, of which three were present in exons. Two of these resulted in amino acid changes. One of the amino acid differences is a known polymorphism in C4, a Tyr/Ser substitution at position 328 in the beta-chain. The second amino acid difference caused by a C to T transition in the first base of the codon for amino acid residue 458 was the only one shown to be specific to the C4A6 allotype. The C4A6 allotype contains a Trp residue at this position in the beta-chain instead of the Arg residue found in all other C4A and C4B allotypes so far characterized. We propose that this Arg to Trp substitution at beta-chain residue 458 is responsible for the inability of C4A6 to bind C5 in the C5 convertase. 相似文献
10.
L. V. Kozlov V. M. Lakhtin T. G. Skorokhodova T. N. Batalova B. B. Shoibonov V. L. D’yakov V. A. Guzova N. S. Matveevskaya 《Russian Journal of Bioorganic Chemistry》2000,26(7):482-489
The difference in the functional activity of the isotypes A and B of component C4 of human complement was used to determine
their ratio and to detect the inherited deficiency of the isotypes. ELISA methods were developed for the quantitative assay
of component C4 (conventional sandwich method) and its functional activity. When determining the functional activity, the
classic pathway of the complement and therefore of component C4 was activated on activators sorbed on ELISA microplates: immunoglobulin
IgG3 or liposaccharide of theShigella sonnei cell walls, which activates the complement by binding component C1. The nascent fragment C4b is covalently bound to the target
activator; C4Ab binds better to the target protein (immunoglobulin), and C4Bb to the target carbohydrate (liposaccharide).
Therefore, when immunoglobulin is a target activator, isotype C4A is bound and determined; and when the complement is activated
with liposaccharide, isotype C4B is determined. The radio of the activities determined by the two methods indicates the deficiency
in the individual isotypes of component C4 or its absence. The rabbit polyclonal monospecific antibodies against the human
component C4 and the conjugates of these antibodies with horseradish peroxidase were used in the methods described. 相似文献
11.
The rat parasite Trypanosoma lewisi was incubated in vitro with rat or human serum, washed, and extracted in detergent. Extracts were fractionated by electrophoresis in denaturing gels, transferred to nitrocellulose, allowed to renature, then immunoblotted with polyclonal antibodies to rat complement component C3 and human complement components C3, C5, and factor B. Molecules that reacted with these antibodies were detected in the extracts. Fragments of rat C3 were detected in extracts of parasites that had not been exposed to serum in vitro. Additional complement deposition occurred during in vitro incubations; human complement components deposited in vitro could be distinguished from rat components deposited in vivo. Complement deposition in vitro required magnesium ions and did not occur when heat inactivated serum was used. Components reacting with antibodies to human C3 included a group of bands with molecular weights higher than C3 alpha or beta chains. Blotting with affinity purified, chain specific antibodies demonstrated that a 68 kDa component on parasites is C3 beta and that a 44 kDa molecule is derived from C3 alpha. A 73 kDa component that was difficult to resolve from C3 beta is probably also a C3 alpha fragment. This suggests that an inactive iC3b-like molecule is present on parasites. Kinetic studies showed that cleavage of C3 alpha is rapid and that the amount of C3 alpha fragments and C3 beta on intact parasites reached a steady state after 15 min. When parasites were trypsinized prior to incubation in C5 or C6 deficient serum, the rate and extent of C3 and C5 deposition increased. Unprocessed C3 alpha' and C5 alpha' chains were detected. Trypsinized parasites were lysed by the alternative complement pathway in normal serum. Intact parasites could be lysed by complement in the presence of antibody. The data support our previous suggestion that trypsin sensitive surface proteins on intact T. lewisi limit alternative pathway activity by restricting C3/C5 convertase activity. 相似文献
12.
13.
The human complement system: assembly of the classical pathway C3 convertase. 总被引:1,自引:3,他引:1 下载免费PDF全文
M A Kerr 《The Biochemical journal》1980,189(1):173-181
The assembly of the classical pathway C3 convertase in the fluid phase has been studied. The enzyme is assembled from C2 and C4 on cleavage of these proteins by C1s. Once assembled, the enzyme activity decays rapidly. Kinetic evidence has been obtained that this decay is even more rapid than previously suggested (kdecay is 2.0 min-1 at 37 degrees C). As a result, optimal C3 convertase activity is only observed with high C1s levels, which result in rapid rates of cleavage of C2 and increased rates of formation of the C3 convertase. Using high concentrations of C1s at lower temperatures (22 degrees C) in the presence of excess substrate we have demonstrated kinetically that the enzyme comprises an equimolar complex of C4b and cleaved C2. We have obtained direct evidence from gel-filtration experiments for the role of C2a as the catalytic subunit of the enzyme. C2b appears to mediate the interaction between C4 (or C4b) and C2 at pH 8.5 and at low ionic strength where the interactions can easily be detected. It may therefore be important in the assembly of the enzyme, though it is not involved in the catalytic activity. The decay of the C3 convertase reflects the release of C2a from the C4b x (C2b) x C2a complex, and the stabilizing effect of iodine on the C3 convertase is therefore apparently one of stabilizing the C4b-C2z interaction, which is otherwise weak. C1s is not a part of the C3 convertase enzyme. 相似文献
14.
The isolation and structure of C4, the fourth component of human complement. 总被引:18,自引:8,他引:18 下载免费PDF全文
The fourth component of complement, C4, was isolated from human serum in good yield, and in confirmation of previous reports was shown to be formed from three peptide chains, alpha, beta and gamma, with apparent mol.wts. 90 000, 80 000 and 30 000 respectively. Preparative methods are described for the isolation of the three peptide chains and their amino acid analyses reported. Component C4 contains 7.0% carbohydrate, alpha-chain 8.6% and the beta-chain 5.6%. The N-terminal amino acid sequences are given for 12 residues of the alpha-chain, eight of the beta-chain and 19 of the gamma-chain. 相似文献
15.
16.
cDNA clones of human complement components C4A and C4B alleles were prepared from mRNA obtained from the liver of a donor heterozygous at both loci. cDNA from one C4A allele was sequenced to give the derived complete amino acid sequence of 1722 amino acid residues of the C4 single chain precursor molecule and the estimated sequences of the three peptide chains of secreted C4. Comparison with partial sequences of a second C4A allele and a C4B allele has led to the tentative identification of some class differences in nucleotide sequences between C4A and C4B and of allelic differences between C4A alleles in this highly polymorphic system. 相似文献
17.
Surface-dependent modulation by H of C5 cleavage by the cell-bound alternative pathway C5 convertase of human complement 总被引:1,自引:0,他引:1
Regulation by H of formation of the C3 and C5 alternative pathway convertases of complement on cells is dependent on such chemical characteristics of the cell surfaces as their membrane content in sialic acid. Properdin-stabilized C5 convertase sites were assembled on the non-activating cells of the alternative pathway, sheep erythrocytes (Es), and on the activating cells, desialated Es and rabbit erythrocytes (Er). C5 hemolytic sites were revealed by incubation of the convertase-bearing cells with limiting C5 and excess C6-C9. H inhibited generation of C5 hemolytic sites in a dose-related fashion on Es, Er, and desialated Es at molar ratios of H/C5 of 0.03 to 0.5. H similarly inhibited C5 utilization by the cell-bound C5 convertase on Es and desialated Es regardless of the cell membrane sialic acid content; however, H was three to five times less effective on Er. Kinetic experiments also suggested that C5 hemolytic sites are generated more rapidly on Er than on Es and desialated Es. The inhibition effect of H was independent of the number of C5 convertase sites per cell on all cell types; two to three times more residual hemolytic sites were found on convertase-bearing Es that had been incubated with C5 and H as compared with cells that had been decayed by H before incubation with C5. Furthermore, H also inhibited C5 interaction with a preformed classical pathway C5 convertase. These results suggest that H interacts with C5 so as to alter C5 binding and/or cleavage by the cell-bound C5 alternative pathway convertase. Sialic acid-independent modulation by H of C5 cleavage by the C5 convertase represents an additional regulatory step in the activation of the human alternative complement pathway. 相似文献
18.
The structure of human complement component C7 and the C5b-7 complex 总被引:12,自引:0,他引:12
R G DiScipio D N Chakravarti H J Muller-Eberhard G H Fey 《The Journal of biological chemistry》1988,263(1):549-560
The molecular architecture of human complement component C7 was elucidated at several structural levels. The complete primary structure of C7 was derived from the cDNA sequence of clones isolated from a human liver library. C7 is a mosaic protein that consists of 821 amino acids. The amino-terminal two-thirds of C7 has 23-30% homology with complement components C8 and C9. In addition, the carboxyl-terminal third contains four cysteine-rich segments that have overlapping internal homology. The protein is a single polypeptide chain with 28 disulfide bonds and is glycosylated at two sites. Virtually all the cysteines are found in small units of 35-77 amino acids that exhibit homology with those of various proteins including the low density lipoprotein receptor, epidermal growth factor precursor, thrombospondin, and blood coagulation factors IX and X. The secondary structural analysis, estimated by circular dichroism, suggested a high content of beta-sheet (38%) and beta-turns (24%). The tertiary structure, visualized by transmission electron microscopy, indicated a flexible elongated molecule with dimensions of 151 X 59 X 43 A. The quaternary structure of the C5b-7 complex bound to lipid vesicles was observed to be in the form of monomers or dimers. The monomer C5b-7 consists of a leaflet and a long flexible stalk, and the dimer has two leaflets linked through a supercoiled stalk. Membrane binding is mediated by the stalk part of the complexes. Using a radioiodinated photoreactive cross-linking reagent bound to the polar head group of phosphatidylethanolamine, the stalk part of the C5b-7 complex could be labeled preferentially, and it was found to consist mainly of C6 and C7. Thus, C7 plays a major role in bringing about the hydrophilic-amphiphilic transition during the formation of the membrane attack complex, and it serves as a membrane anchor for the C5b-7 complex. 相似文献
19.
Sandoval A Ai R Ostresh JM Ogata RT 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(2):1066-1073
Previous studies focused on indels in the complement C345 protein family identified a number of potential protein-protein interaction sites in components C3 and C5. Here, one of these sites in C5, near the alpha-chain C terminus, was examined by alanine-scanning mutagenesis at 16 of the 18 non-alanine residues in the sequence KEALQIKYNFSF RYIYPLD. Alanine substitutions affected activities in the highly variable manner characteristic of binding sites. Substitutions at the lysine or either phenylalanine residue in the central KYNFSF sequence had the greatest effects, yielding mutants with <20% of the normal activity. These three mutants were also resistant to the classical pathway (CP) C5 convertase, with sensitivities roughly proportional to their hemolytic activities, but had normal susceptibilities to the cobra venom factor (CVF)-dependent convertase. Synthetic peptide MGKEALQIKYNFS-NH2 was found similarly to inhibit CP but not CVF convertase activation, and the effects of alanine substitutions in this peptide largely reflected those of the equivalent mutations in C5. These results indicate that residues KYNFSF form a novel, distal binding site for the CP, but not CVF convertase. This site lies approximately 880 residues downstream of the convertase cleavage site within a module that has been independently named C345C and NTR; this module is found in diverse proteins including netrins and tissue inhibitors of metalloproteinases. 相似文献
20.
The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit. 相似文献