首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The segment of the avian leukemia virus E26 genome near the termination of the p135gag-myb-ets open reading frame contains an inversion of the chicken ets-1 sequence. The inversion contains at least 41 bp and may be as large as 46 bp. This results in the replacement of 13 amino acids of chicken ets-1, with 16 amino acids derived from reverse complement of the normal ets-1 coding strand or read-through into E26 env sequences. At least 13 of these codons are specified by the inverted ets sequences. This represents the first reported occurrence of inverted oncogene sequences in a natural retrovirus. The inverted ets sequences are immediately followed by sequences homologous to the Rous sarcoma virus Prague B env gene. Since the E26 env sequence is more closely related to subgroup B avian retroviruses than to avian retroviruses from subgroups A, C, D, or E, the progenitor of E26 was a virus belonging to avian retrovirus subgroup B.  相似文献   

2.
3.
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).  相似文献   

4.
We detected sequences related to the avian retrovirus Rous sarcoma virus within the genome of the Japanese quail, a species previously considered to be free of endogenous avian leukosis virus elements. Using low-stringency conditions of hybridization, we screened a quail genomic library for clones containing retrovirus-related information. Of five clones so selected, one, lambda Q48, contained sequence information related to the gag, pol, and env genes of Rous sarcoma virus arranged in a contiguous fashion and spanning a distance of approximately 5.8 kilobases. This organization is consistent with the presence of an endogenous retroviral element within the Japanese quail genome. Use of this element as a high-stringency probe on Southern blots of genomic digests of several quail DNA demonstrated hybridization to a series of high-molecular-weight bands. By slot hybridization to quail DNA with a cloned probe, it was deduced that there were approximately 300 copies per diploid cell. In addition, the quail element also hybridized at low stringency to the DNA of the White Leghorn chicken and at high stringency to the DNAs of several species of jungle fowl and both true and ruffed pheasants. Limited nucleotide sequencing analysis of lambda Q48 revealed homologies of 65, 52, and 46% compared with the sequence of Rous sarcoma virus strain Prague C for the endonuclease domain of pol, the pol-env junction, and the 3'-terminal region of env, respectively. Comparisons at the amino acid level were also significant, thus confirming the retrovirus relatedness of the cloned quail element.  相似文献   

5.
6.
A new family of related endogenous proviruses, existing at 50 to 100 copies per haploid genome and distinguishable by remarkably short long terminal repeats, has been described for domestic chickens (Gallus gallus subsp domesticus). In this communication, by using Southern blot analysis and probes derived from both internal viral sequences and locus-specific, cellular flanking sequences, we studied the genetic distribution of this family of moderately repetitive avian endogenous retroviruses within the genomes of four Gallus species. Eight inbred lines of domestic chickens, the evolutionary progenitor to the domestic chicken (red jungle fowl), and two more distantly related species (grey and green jungle fowl) were studied. All Gallus species harbored this class of elements, although the different lines of domestic chickens and different species of jungle fowl bore distinguishable complements of the proviral loci. Jungle fowl appeared to have fewer copies than domestic chickens. For three randomly isolated proviral loci, domestic chickens (G. gallus subsp. domesticus) and red jungle fowl (G. gallus subsp. gallus) showed only a proviral state, whereas the most primitive and divergent of the jungle fowl, the green jungle fowl (G. varius), consistently demonstrated only preintegration states or disparate alleles. The presence of this family in all Gallus species and of related sequences in other genera suggests that a primordial founding integration event occurred prior to the evolutionary separation of Gallus species and possibly related genera. Additionally, at least one proviral locus has been acquired subsequent to speciation, indicating that this family was actively infectious after the primary founding event. This conserved, repetitive proviral family appears to represent the vestigial remnant of an avian retrovirus class related to and evolutionarily more ancient than the Rous-associated virus-0 family of avian endogenous retroviruses.  相似文献   

7.
A 3' region of a previously unknown retroviruslike element named ART-CH (avian retrotransposon from chicken genome) was obtained in the course of polymerase chain reaction-mediated cloning of avian leukosis virus long terminal repeats (LTRs) from DNAs of infected chicken cells. About 50 copies of ART-CH are present in the genome of chickens of different breeds. ART-CH is not found in DNA of quails, ducks, turkeys, or several other birds tested. The ART-CH element is about 3 kb in size, including 388 bp LTRs. The major class of ART-CH-specific RNA, also 3 kb in size, is detected in various organs of chickens. An ART-CH polypurine tract, a tRNA(Trp)-binding site, regions around the TATA box and polyadenylation signal, and the beginning of the putative gag gene strongly resemble the corresponding regions of avian leukosis viruses and EAV, the two described classes of chicken retroviruses. An open reading frame capable of encoding a polypeptide with a putative transmembrane domain is located upstream of the right ART-CH LTR. This sequence, as well as the U3 and U5 regions of the ART-CH LTR, has no obvious similarities with the corresponding parts of other known vertebrate retroviruses and retrotransposons. A short sequence upstream of the right LTR of ART-CH is very similar to sequences which flank the 3' ends of the oncogenes v-src, v-myc, v-fps, and v-crk in four different recombinant avian retroviruses and which are absent from the genomes of other studied avian retroviruses. Thus, ART-CH is a new endogenous chicken provirus that may participate in the formation of recombinant oncogenic retroviruses.  相似文献   

8.
Molecular basis of host range variation in avian retroviruses.   总被引:28,自引:21,他引:7       下载免费PDF全文
Previous genetic analysis has localized the region of the Rous sarcoma virus (RSV) env gene responsible for host range specificity to that encoding the middle one-third of gp85. To better understand the host range determinants, the relevant regions of the genomes of infectious molecular clones of the transformation-defective Prague strain of RSV, subgroup B (Pr-RSV-B) and Rous-associated virus 0 (RAV-0) (subgroup E) were sequenced and compared with the sequence of Pr-RSV-C. This comparative analysis identified two variable regions of low amino acid sequence homology flanked by highly conserved amino acid sequences. The first variable region (hr1) begins at base 5654 in the Pr-RSV-C sequence and encodes 32 amino acids. The second variable region (hr2) begins at base 5846 and encodes 27 amino acids. To test the role of the variable regions in host range specificity, we determined the sequence of this region of the env gene of NTRE-4, a recombinant virus between Pr-RSV-B and RAV-0 which exhibits an extended host range. This analysis revealed that the recombinant subgroup-encoding region of NTRE-4 is composed of 200 bases of RAV-0 sequence, including hr2, flanked by sequences which are otherwise of Pr-RSV-B origin. This study indicates that hr1 and hr2 are the domains of gp85 responsible for host range determination in avian retroviruses.  相似文献   

9.
Using less stringent hybridization conditions and cloned viral DNA probes representing the avian sarcoma virus gag, pol, env, and long terminal repeat (LTR) gene sequences, we detected related sequences in two avian species purportedly lacking all endogenous avian leukosis viruses, the ev- chicken and the Japanese quail. The blot hybridization patterns obtained with the various probes suggest the presence of between 40 and 100 copies of retrovirus-related sequences in the genomes of these two species. An ev- chicken genomic DNA library was prepared and screened with gag-specific and pol-specific DNA probes. Several different clones were obtained from this library and characterized. Analysis of these clones revealed that the retrovirus-related gene sequences are linked in the order LTR-gag-pol-env-LTR, a structure indicative of a complete provirus. These data indicate the presence of previously unidentified endogenous retrovirus species in avian cells, suggesting that under the appropriate conditions of hybridization additional, more distantly evolved families of endogenous retrovirus genes may be identified in vertebrate species.  相似文献   

10.
Receptor recognition by avian retroviruses is thought to involve the interaction of two regions of the SU protein, hr1 and hr2, with the host cell surface receptor. These regions exhibit considerable variation, concordant with differences in receptor usage among the many avian leukosis virus subgroups. We hypothesize that some retroviruses have altered receptor usage in response to selective pressures imposed by receptor polymorphisms in their hosts. To test this hypothesis, we passaged td-Pr-RSV-B on cocultured permissive chicken (C/E) and nonpermissive quail (QT6/BD) cells. A variant virus with an expanded host range was identified at passage 29 and ultimately shown to be identical in sequence to td-Pr-RSV-B, except for changes at codons 155 and 156 of SU amino acid corresponding to two amino acid changes within hr1. Superinfection resistance studies suggest that the variant virus recognizes the subgroup B receptor on chicken cells and the subgroup E receptor on quail cells. These findings indicate that altered receptor usage can be conferred by small changes in env and may point to a key region for receptor interaction. Further, they demonstrate the evolutionary potential of retroviral env genes to alter receptor usage in response to appropriate selective pressure.  相似文献   

11.
The nucleotide sequence of the env gp85-coding domain from two avian sarcoma and leukosis retrovirus isolates was determined to identify host range and antigenic determinants. The predicted amino acid sequence of gp85 from a subgroup D virus isolate of the Schmidt-Ruppin strain of Rous sarcoma virus was compared with the previously reported sequences of subgroup A, B, C, and E avian sarcoma and leukosis retroviruses. Subgroup D viruses are closely related to the subgroup B viruses but have an extended host range that includes the ability to penetrate certain mammalian cells. There are 27 amino acid differences shared between the subgroup D sequence and three subgroup B sequences. At 16 of these sites, the subgroup D sequence is identical to the sequence of one or more of the other subgroup viruses (A, C, and E). The remaining 11 sites are specific to subgroup D and show some clustering in the two large variable regions that are thought to be major determinants of host range. Biological analysis of recombinant viruses containing a dominant selectable marker confirmed the role of the gp85-coding domain in determining the host range of the subgroup D virus in the infection of mammalian cells. We also compared the sequence of the gp85-coding domain from two subgroup A viruses, Rous-associated virus type 1 and a subgroup A virus of the Schmidt-Ruppin strain of Rous sarcoma virus. The comparison revealed 24 nonconservative amino acid changes, of which 6 result in changes in potential glycosylation sites. The positions of 10 amino acid differences are coincident with the positions of 10 differences found between two subgroup B virus env gene sequences. These 10 sites identify seven domains in the sequence which may constitute determinants of type-specific antigenicity. Using a molecular recombinant, we demonstrated that type-specific neutralization of two subgroup A viruses was associated with the gp85-coding domain of the virus.  相似文献   

12.
Molecular clones of the subgroup A feline leukemia virus FeLV-A/Glasgow-1 have been obtained. Nucleotide sequence analysis of the 3' end of the proviral genome and comparison with the published sequence of FeLV-B/Gardner-Arnstein showed that the most extensive differences are located within the 5' domain of the env gene. Within this domain, several divergent regions of env are separated by more conserved segments. The 3' end of env is highly conserved, with only a single amino acid coding difference in p15env. The proviral long terminal repeats are also highly conserved, differing by only eight base substitutions and one base insertion. Specific probes constructed from the FeLV-A or FeLV-B env genes were used to compare the env genes of various exogenous FeLV isolates and the endogenous FeLV-related proviruses of normal cat DNA. An FeLV-A-derived env probe showed no hybridization to normal cat DNA but detected all FeLV-A and FeLV-C isolates tested. In contrast, an FeLV-B env probe detected independent FeLV-B isolates and a family of endogenous FeLV-related proviruses. Our observations provide strong evidence to support the hypothesis that FeLV-B viruses have arisen by recombination between FeLV-A and endogenous proviral elements in cat DNA.  相似文献   

13.
14.
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.  相似文献   

15.
Nucleotide sequence analysis of the env gene of two different endogenous feline leukemia virus (FeLV) loci, CFE-6 and CFE-16, of domestic cats revealed the following characteristics. (i) Both proviruses contain an open reading frame in the env region; (ii) whereas the full complement of the exogenous FeLV env is generally present in CFE-6 DNA, it is truncated in CFE-16 DNA such that the 5' half of the gp70 domain and the untranslated region 3' to the p15E domain have been fused by an internal deletion, resulting in loss of the C-terminal half of the gp70- and all of the p15E-coding sequences; (iii) endogenous env is highly homologous to large sequence domains conserved in all three exogenous FeLV subgroups (A, B, and C) but is similar to FeLV-B sequence domains in the variable regions detected in these viruses; and (iv) there are four other sequence domains, one residing at the C terminus of gp70 and three scattered in p15E, which are unique for the endogenous env, thereby distinguishing it from the FeLV-B gene.  相似文献   

16.
Using the method of dual color fluorescence in situ hybridization and a set of chromosome-specific BAC clones, localization of microsatellites LEI0345 and LEI0336 on chicken (Gallus gallus domesticus) mitotic chromosomes was performed. Microsatellite LEI0345 (TAM 32, BAC clones r49A10 and r55M23) from the linkage group E26C13 was mapped to microchromosome 20, while microsatellite LEI0336 (TAM 32, BAC clones r19E22 and r13C08) from the linkage E50C23 was assigned to microchromosome 21. Using the PCR technique, an attempt to assign the suitable markers to chromosome-specific BAC clones was made. The PCR data confirmed the microsatellite localization performed with the help of FISH technique and showed the presence of the LEI0345 microsatellite sequence on many other chicken microchromosomes, except for microchromosomes 19 and 22. Linkage groups E26C13 and E50C23 were assigned to microchromosomes 20 and 21, respectively.  相似文献   

17.
18.
Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in the thymus. A subgroup B virus (RAV-2), like the subgroup E viruses, demonstrated a distinct bursal and thymic tropism, further supporting the theory that genes encoding receptors for subgroup B and E viruses are allelic. The source of long terminal repeats (LTRs) or adjacent sequences also influenced tissue-specific replication, with the LTRs from endogenous virus RAV-0 supporting efficient replication in the bursa and thymus but not in skeletal muscle. These results indicate that ALV env and LTR regions are responsible for unexpectedly distinctive tissue tropisms.  相似文献   

19.
20.
Human retroviral sequences on the Y chromosome.   总被引:1,自引:0,他引:1       下载免费PDF全文
Novel endogenous human retroviral sequences were cloned by low-stringency hybridization, using the pol gene of endogenous human retrovirus 51-1. One clone, lambda NP-2, contained gag, pol, env, and long terminal repeat sequences related to the corresponding portions of clone 51-1 and the closely related full-length endogenous human retrovirus 4-1. The sequence of the env gene of NP-2 was 73% homologous to that of 4-1. Genomic Southern blots of male and female DNAs showed that NP-2 is located on the Y chromosome and that the Y chromosome also contains one other sequence closely related to the env and 3' flanking regions of NP-2. Conservation of flanking DNA suggests that the second Y chromosome copy of the NP-2 env sequence arose by gene duplication rather than provirus insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号