首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aryl phenyl ureas with a 4-quinazolinoxy substituent at the meta-position of the phenyl ring are potent inhibitors of mutant and wild type BRAF kinase. Compound 7 (1-(5-tert-butylisoxazol-3-yl)-3-(3-(6,7-dimethoxyquinazolin-4-yloxy)phenyl)urea hydrochloride) exhibits good pharmacokinetic properties in rat and mouse and is efficacious in a mouse tumor xenograft model following oral dosing.  相似文献   

2.
Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.  相似文献   

3.

Background

Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall survival. To achieve efficient killing of tumor cells, however, immunotherapy has to overcome cancer-associated strategies to evade the cytotoxic immune response. Whether CNS-PNETs can evade the immune response remains unknown.

Methods

We examined by immunohistochemistry the immune response and immune evasion strategies in pediatric CNS-PNETs.

Results

Here, we show that CD4+, CD8+, γδ-T-cells, and Tregs can infiltrate pediatric CNS-PNETs, although the activation status of cytotoxic cells is variable. Pediatric CNS-PNETs evade immune recognition by downregulating cell surface MHC-I and CD1d expression. Intriguingly, expression of SERPINB9, SERPINB1, and SERPINB4 is acquired during tumorigenesis in 29%, 29%, and 57% of the tumors, respectively.

Conclusion

We show for the first time that brain tumors express direct granzyme inhibitors (serpins) as a potential mechanism to overcome cellular cytotoxicity, which may have consequences for cellular immunotherapy.  相似文献   

4.

Objective

To evaluate the association of the BRAFV600E mutation with sonographic features and clinicopathologic characteristics in a large population with conventional papillary thyroid carcinoma (PTC).

Methods

We retrospectively reviewed the sonographic features, clinicopathologic characteristics, and presence of the BRAFV600E mutation in 688 patients who underwent thyroidectomy for conventional PTC between January and July 2010 at a single institution. The incidence of the BRAFV600E mutation was calculated. The sonographic features and clinicopathologic characteristics were compared between BRAF-positive and BRAF-negative patients. BRAF-positive patients were subdivided into those with papillary thyroid microcarcinoma (the PTMC group) and those with PTC larger than 10 mm (the PTC>10 mm group), and their sonographic features were compared.

Results

The BRAFV600E mutation was detected in 69.2% of patients (476 of 688). Sonographic features were not significantly different between BRAF-positive and BRAF-negative PTC, nor between PTMC and PTC>10 mm groups. The BRAFV600E mutation was associated with male sex (P = 0.028), large tumor size, extrathyroidal extension, central and lateral lymph node metastasis, and advanced tumor stage (P<0.0001).

Conclusion

The BRAFV600E mutation was significantly associated with several poor clinicopathologic characteristics, but was not associated with sonographic features, regardless of tumor size. We recommend that patients with a thyroid nodule with any suspicious sonographic feature undergo preoperative BRAFV600E testing for risk stratification and to guide the initial surgical approach in PTC.  相似文献   

5.
A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAFV600E) is tightly associated with CIMP, raising the question of whether BRAFV600E plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAFV600E. We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAFV600E causes DNA hypermethylation by stably expressing BRAFV600E in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAFV600E is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAFV600E and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAFV600E-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAFV600E-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAFV600E in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding CIMP in colorectal cancer and gaining insights into the role of aberrant DNA hypermethylation in colorectal tumorigenesis.  相似文献   

6.
7.
Identifying low-abundance mutations is important for the therapy and diagnose of cancer. Since the potential for tumor heterogeneity, the efficient detection of cancer-relevant mutations largely depends on the sensitivity of the methods employed. To confirm whether the mutation detection platforms affect the perceived prevalence of the BRAF(V600E) and its correlation with clinicopathologic features in papillary thyroid carcinomas (PTC), we compared Sanger Sequencing (SS), Pyrosequencing (PS), and a newly built allele-specific real-time PCR (AS-qPCR) apparatus for the detection of BRAF(V600E) in a Chinese cohort of conventional variant PTC. Accurate plasmid standards were built to assess the limit of detection of the three platforms. In this research, AS-qPCR has been found both the most sensitive and reliable at detecting mutation. The mutations detected by AS-qPCR which were not detected by SS or PS due to low abundance were confirmed by mutation enrichment platform COLD-PCR followed by SS. When analyzed by AS-qPCR, BRAF(V600E) was associated with a more aggressive phenotype. Our results indicate that the reported prevalence of the BRAF(V600E) mutations in PTC has been underestimated and more sensitive methods such as AS-qPCR should be applied in clinical settings.  相似文献   

8.
The BRAF gene is frequently mutated in cancer. The most common genetic mutation is a single nucleotide transition which gives rise to a constitutively active BRAF kinase (BRAFV600E) which in turn sustains continuous cell proliferation. The study of BRAFV600E murine models has been mainly focused on the role of BRAFV600E in tumor development but little is known on the early molecular impact of BRAFV600E expression in vivo. Here, we study the immediate effects of acute ubiquitous BRAFV600E activation in vivo. We find that BRAFV600E elicits a rapid DNA damage response in the liver, spleen, lungs but not in thyroids. This DNA damage response does not occur at telomeres and is accompanied by activation of the senescence marker p21CIP1 only in lungs but not in liver or spleen. Moreover, in lungs, BRAFV600E provokes an acute inflammatory state with a tissue-specific recruitment of neutrophils in the alveolar parenchyma and macrophages in bronchi/bronchioles, as well as bronchial/bronchiolar epithelium transdifferentiation and development of adenomas. Furthermore, whereas in non-tumor alveolar type II (ATIIs) pneumocytes, acute BRAFV600E induction elicits rapid p53-independent p21CIP1 activation, adenoma ATIIs express p53 without resulting in p21CIP1 gene activation. Conversely, albeit in Club cells BRAFV600E-mediated proliferative cue is more exacerbated compared to that occurring in ATIIs, such oncogenic stimulus culminates with p21CIP1-mediated cell cycle arrest and apoptosis. Our findings indicate that acute BRAFV600E expression drives an immediate induction of DNA damage response in vivo. More importantly, it also results in rapid differential responses of cell cycle and senescence-associated proteins in lung epithelia, thus revealing the early molecular changes emerging in BRAFV600E-challenged cells during tumorigenesis in vivo.Subject terms: Lung cancer, Senescence  相似文献   

9.
Vimentin in the Central Nervous System   总被引:7,自引:0,他引:7  
Intermediate filament proteins were identified by two-dimensional gel electrophoresis in urea extracts of rat optic nerves undergoing Wallerian degeneration and in cytoskeletal preparations of rat brain and spinal cord during postnatal development. The glial fibrillary acidic (GFA) protein and vimentin were the major optic nerve proteins following Wallerian degeneration. Vimentin was a major cytoskeletal component of newborn central nervous system (CNS) and then progressively decreased until it became barely identifiable in mature brain and spinal cord. The decrease of vimentin occurred concomitantly with an increase in GFA protein. A protein with the apparent molecular weight of 61,000 and isoelectric point of 5.6 was identified in both cytoskeletal preparations of brain and spinal cord, and in urea extracts of normal optic nerves. The protein disappeared together with the polypeptides forming the neurofilament triplet in degenerated optic nerves.  相似文献   

10.
11.
12.
Mutation specific immunohistochemistry (IHC) is a promising new technique to detect the presence of the BRAFV600E mutation in colorectal carcinoma (CRC). When performed in conjunction with mismatch repair (MMR) IHC, BRAFV600E IHC can help to further triage genetic testing for Lynch Syndrome. In a cohort of 1426 patients undergoing surgery from 2004 to 2009 we recently demonstrated that the combination of MMR and BRAFV600E IHC holds promise as a prognostic marker in CRC, particularly because of its ability to identify the poor prognosis MMR proficient (MMRp) BRAFV600E mutant subgroup. We attempted to validate combined MMR and BRAFV600E IHC as a prognostic indicator in a separate cohort comprising consecutive CRC patients undergoing surgery from 1998 to 2003. IHC was performed on a tissue microarray containing tissue from 1109 patients with CRC. The 5 year survivals stratified by staining patterns were: MMRd/BRAFwt 64%, MMRd/BRAFV600E 64%, MMRp/BRAFwt 60% and MMRp/BRAFV600E 53%. Using the poor prognosis MMRp/BRAFV600E phenotype as baseline, univariate Cox regression modelling demonstrated the following hazard ratios for death: MMRd/BRAFwt HR = 0.71 (95%CI = 0.40–1.27), p = 0.31; MMRd/BRAFV600E HR = 0.74 (95%CI = 0.51–1.07), p = 0.11 and MMRp/BRAFwt HR = 0.79 (95%CI = 0.60–1.04), p = 0.09. Although the findings did not reach statistical significance, this study supports the potential role of combined MMR and BRAF IHC as prognostic markers in CRC.  相似文献   

13.
14.
Thymidine Transport in the Central Nervous System   总被引:10,自引:9,他引:1  
  相似文献   

15.
Riboflavin Homeostasis in the Central Nervous System   总被引:2,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

16.
Cytokine Actions in the Central Nervous System   总被引:9,自引:0,他引:9  
Cytokines and chemokines have been implicated in contributing to the initiation, propagation and regulation of immune and inflammatory responses. Also, these soluble mediators have important roles in contributing to a wide array of neurological diseases such as multiple sclerosis, AIDS Dementia Complex, stroke and Alzheimers disease. Cytokines and chemokines are synthesized within the central nervous system by glial cells and neurons, and have modulatory functions on these same cells via interactions with specific cell-surface receptors. In this article, I will discuss the ability of glial cells and neurons to both respond to, and synthesize, a variety of cytokines. The emphasize will be on three select cytokines; interferon-gamma (IFN-γ), a cytokine with predominantly proinflammatory effects; interleukin-6 (IL-6), a cytokine with both pro- and anti-inflammatory properties; and transforming growth factor-beta (TGF-β), a cytokine with predominantly immunosuppressive actions. The significance of these cytokines to neurological diseases with an immunological component will be discussed.  相似文献   

17.
Although BRAFV600E is well known to play an important role in the tumorigenesis of melanoma, its molecular mechanism, particularly the epigenetic aspect, has been incompletely understood. Here, we investigated the role of BRAFV600E signaling in altering gene methylation in the genome of melanoma cells using a methylated CpG island amplification/CpG island microarray system and searched for genes coupled to the BRAFV600E signaling through methylation aberrations. The results indicated that a wide range of genes with broad functions were linked to BRAFV600E signaling through their hyper- or hypomethylation. Expression of 59 genes hypermethylated upon BRAF knockdown was selectively tested and found to be largely correspondingly underexpressed, suggesting that these genes were naturally hypomethylated and overexpressed with BRAFV600E in melanoma. This BRAFV600E-promoted hypomethylation was confirmed on genes selectively examined in primary melanoma tumors. Some of these genes were functionally tested and demonstrated to play a role in melanoma cell proliferation and invasion. As a mechanism of aberrant gene methylation driven by BRAFV600E, expression of the DNA methyltransferase 1 and histone methyltransferase EZH2 was profoundly affected by BRAFV600E. We have thus uncovered a previously unrecognized prominent epigenetic mechanism in the tumorigenesis of melanoma driven by BRAFV600E. Many of the functionally important genes controlled by the BRAFV600E signaling through aberrant methylation may prove to be novel therapeutic targets for melanoma.Key words: BRAF mutation, DNA methylation, melanoma, MAP kinase pathway, gene hypomethylation, gene hypermethylation  相似文献   

18.
Although BRAFV600E is well known to play an important role in the tumorigenesis of melanoma, its molecular mechanism, particularly the epigenetic aspect, has been incompletely understood. Here, we investigated the role of BRAFV600E signaling in altering gene methylation in the genome of melanoma cells using a methylated CpG island amplification/CpG island microarray system and searched for genes coupled to the BRAFV600Esignaling through methylation aberrations. The results indicated that a wide range of genes with broad functions were linked to BRAFV600E signaling through their hyper- or hypomethylation. Expression of 59 genes hypermethylated upon BRAF knockdown was selectively tested and found to be largely correspondingly underexpressed, suggesting that these genes were naturally hypomethylated, and overexpressed with BRAFV600E in melanoma. This BRAFV600E-promoted hypomethylation was confirmed on genes selectively examined in primary melanoma tumors. Some of these genes were functionally tested and demonstrated to play a role in melanoma cell proliferation and invasion. As a mechanism of aberrant gene methylation driven by BRAFV600E, expression of the DNA methyltransferase 1 and histone methyltransferase EZH2 was profoundly affected by BRAFV600E. We have thus uncovered a previously unrecognized prominent epigenetic mechanism in the tumorigenesis of melanoma driven by BRAFV600E. Many of the functionally important genes controlled by the BRAFV600E signaling through aberrant methylation may prove to be novel therapeutic targets for melanoma.  相似文献   

19.
Resistance to the BRAF inhibitor vemurafenib poses a significant problem for the treatment of BRAFV600E‐positive melanomas. It is therefore critical to prospectively identify all vemurafenib resistance mechanisms prior to their emergence in the clinic. The vemurafenib resistance mechanisms described to date do not result from secondary mutations within BRAFV600E. To search for possible mutations within BRAFV600E that can confer drug resistance, we developed a systematic experimental approach involving targeted saturation mutagenesis, selection of drug‐resistant variants, and deep sequencing. We identified a single nucleotide substitution (T1514A, encoding L505H) that greatly increased drug resistance in cultured cells and mouse xenografts. The kinase activity of BRAFV600E/L505H was higher than that of BRAFV600E, resulting in cross‐resistance to a MEK inhibitor. However, BRAFV600E/L505H was less resistant to several other BRAF inhibitors whose binding sites were further from L505 than that of PLX4720. Our results identify a novel vemurafenib‐resistant mutant and provide insights into the treatment for melanomas bearing this mutation.  相似文献   

20.
Autophagy inhibition is a potential therapeutic strategy in central nervous system (CNS) tumors. The BRAFV600E mutation is known to affect autophagy. Our studies indicate CNS tumor cells with BRAFV600E mutant cells (but not wild type) display high rates of induced autophagy, are sensitive to autophagy inhibition, and display synergy when chloroquine is combined with the RAF kinase inhibitor vemurafenib or standard chemotherapeutics. Our studies also indicate chloroquine can improve vemurafenib sensitivity in intrinsically resistant cells and in a patient with induced-vemurafenib resistance. These findings suggest CNS tumors with BRAFV600E are autophagy-dependent and that identification of BRAFV600E may be a marker to identify pediatric patients with the best potential response to autophagy inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号