共查询到20条相似文献,搜索用时 0 毫秒
1.
Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice 总被引:3,自引:0,他引:3
Hongning Tong Yunhua Xiao Dapu Liu Shaopei Gao Linchuan Liu Yanhai Yin Yun Jin Qian Qian Chengcai Chu 《The Plant cell》2014,26(11):4376-4393
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. 相似文献
2.
3.
4.
5.
6.
Hideki Narukawa Ryusuke Yokoyama Shinichiro Komaki Keiko Sugimoto Kazuhiko Nishitani 《PloS one》2015,10(8)
Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function. 相似文献
7.
Lingyan Cao Jessica L. Henty-Ridilla Laurent Blanchoin Christopher J. Staiger 《Plant physiology》2016,170(1):220-233
Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion.The actin cytoskeleton provides tracks for the deposition of cell wall materials and plays important roles during many cellular processes, such as cell expansion and morphogenesis, vesicle trafficking, and the response to biotic and abiotic signals (Baskin, 2005; Smith and Oppenheimer, 2005; Szymanski and Cosgrove, 2009; Ehrhardt and Bezanilla, 2013; Rounds and Bezanilla, 2013). Plant cells respond to diverse internal and external stimuli by regulating the turnover and rearrangement of actin cytoskeleton networks in the cytoplasm (Staiger, 2000; Pleskot et al., 2013). How these actin rearrangements sense the cellular environment and what accessory proteins modulate specific aspects of remodeling remain an area of active investigation (Henty-Ridilla et al., 2013; Li et al., 2014a, 2015).Using high spatial and temporal resolution imaging afforded by variable-angle epifluorescence microscopy (VAEM; Konopka and Bednarek, 2008), we quantified the behavior of actin filaments in Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells (Staiger et al., 2009). There are two types of actin filament arrays in the cortical cytoplasm of epidermal cells: bundles and single filaments. Generally, actin bundles are stable with higher pixel intensity values, whereas individual actin filaments are fainter, more ephemeral, and constantly undergo rapid assembly and disassembly through a mechanism that has been defined as “stochastic dynamics” (Staiger et al., 2009; Henty et al., 2011; Li et al., 2012, 2015). Elongating actin filaments in the cortical cytoskeleton originate from three distinct locations: the ends of preexisting actin filaments, the side of filaments or bundles, and de novo in the cytoplasm. Plant actin filaments elongate at rates of 1.6 to 3.4 μm/s, which is the fastest assembly reported in eukaryotic cells. Distinct from the mechanism of treadmilling and fast depolymerization in vitro, however, the disassembly of single actin filaments occurs predominately through prolific severing activity (Staiger et al., 2009; Smertenko et al., 2010; Henty et al., 2011). A commonly held view is that the dynamic actin network in plant cells is regulated by the activities of conserved and novel actin-binding proteins (ABPs). Through reverse-genetic approaches and state-of-the-art imaging modalities, we and others have demonstrated that several key ABPs are involved in the regulation of stochastic actin dynamic properties in a wide variety of plants and cell types (Thomas, 2012; Henty-Ridilla et al., 2013; Li et al., 2014a, 2015). Through these efforts, the field has developed a working model for the molecular mechanisms that underpin actin organization and dynamics in plant cells (Li et al., 2015).Profilin is a small (12–15 kD), conserved actin-monomer binding protein present in all eukaryotic cells (dos Remedios et al., 2003). Profilin binds to actin by forming a 1:1 complex with globular (G-)actin, suppresses spontaneous actin nucleation, and inhibits monomer addition at filament pointed ends (Blanchoin et al., 2014). The consequences of profilin activity on actin filament turnover differ based on cellular conditions and the presence of other ABPs. In vitro studies show that the profilin-actin complex associates with the barbed ends of filaments and promotes actin polymerization by lowering the critical concentration and increasing nucleotide exchange on G-actin (Pollard and Cooper, 1984; Pantaloni and Carlier, 1993). When barbed ends are occupied by capping protein, profilin acts as an actin-monomer sequestering protein. These opposing effects of profilin might be a regulatory mechanism for profilin modulation of actin dynamics in cells. In addition to actin, profilin interacts with Pro-rich proteins, as well as polyphosphoinositide lipids in vitro (Machesky et al., 1994). Formin is an ABP that mediates both actin nucleation and processive elongation using the pool of profilin-actin complexes (Blanchoin et al., 2010). The primary sequence of formin includes a Pro-rich domain, named Formin Homology1 (FH1). Evidence from fission and budding yeast shows that profilin can increase filament elongation rates by binding to the FH1 domain (Kovar et al., 2003; Moseley and Goode, 2005; Kovar, 2006). The FH1 domain of Arabidopsis FORMIN1 (AtFH1) is also reported to modulate actin nucleation and polymerization in vitro (Michelot et al., 2005). Recently, two groups reported that profilin functions as a gatekeeper during the construction of different actin networks generated by formin or ARP2/3 complex in yeast and mammalian cells (Rotty et al., 2015; Suarez et al., 2015). These studies highlight the importance of profilin regulation in coordinating the different actin arrays present in the same cytoplasm of eukaryotic cells. However, direct evidence for how profilin facilitates formin-mediated actin nucleation or barbed end elongation in cells remains to be established.Genomic sequencing and isolation of PROFILIN (PRF) cDNAs from plants reveal that profilin is encoded by a multigene family. For example, moss (Physcomitrella patens) has three isovariants (Vidali et al., 2007) and maize (Zea mays) has five (Staiger et al., 1993; Kovar et al., 2001). In Arabidopsis, at least five PRF genes have been identified (Christensen et al., 1996; Huang et al., 1996; Kandasamy et al., 2002). Studies in maize show that the biochemical properties of profilin isoforms differ in vitro (Kovar et al., 2000). Moreover, the localization of profilin isoforms reveals organ-specific expression patterns. Detection of protein levels in vivo with isovariant-specific profilin antibodies demonstrate that Arabidopsis PRF1, PRF2, and PRF3 are constitutively expressed in vegetative tissues, whereas PRF4 and PRF5 are expressed mainly in flower and pollen tissues (Christensen et al., 1996; Huang et al., 1996; Ma et al., 2005).Several genetic studies on the functions of profilin in plants have been conducted. Reduction of profilin levels in P. patens results in the inhibition of tip growth, disorganization of F-actin, and formation of actin patches (Vidali et al., 2007). Moreover, it was shown that the interaction between profilin and actin or Pro-rich ligands is critical for tip growth in moss. Arabidopsis PRF1 has been demonstrated to be involved in cell elongation, cell shape maintenance, and control of flowering time through overexpression and antisense PRF1 transgenic plants, and further, the reduction of PRF1 inhibits the growth of hypocotyls (Ramachandran et al., 2000). However, investigation of a prf1-1 mutant, which contains a T-DNA insertion in the promoter region of the PRF1 gene, indicates that cell expansion of seedlings is promoted and that protein levels of PRF1 are regulated by light (McKinney et al., 2001). Recently, Müssar et al. (2015) reported a new Arabidopsis T-DNA insertion allele, prf1-4, that shows an obvious dwarf seedling phenotype. To date, however, there has not been a critical examination of the impact of the loss of profilin on the organization and dynamics of bona-fide single actin filaments in vivo.Here, we use a combination of genetics and live-cell imaging to investigate the role of PRF1 in the control of actin dynamics and its effect on axial cell expansion. We observed a significant decrease in the overall filament nucleation frequency in prf1 mutants, which is opposite to expectations if profilin suppresses spontaneous nucleation. Through a pharmacological approach, we found that nucleation frequency in wild-type cells treated with a formin inhibitor, SMIFH2, phenocopied prf1 mutants. We also analyzed the dynamic turnover of individual filaments in prf1 mutants and observed a significant decrease in the rate of actin filament elongation and maximum length of actin filaments. Specifically, we found that PRF1 favors the growth of a subpopulation of actin filaments that elongate at rates greater than 2 μm/s and similar results were obtained in cells after SMIFH2 treatment. Our results provide compelling evidence that Arabidopsis PRF1 contributes to stochastic actin dynamics by modulating formin-mediated actin nucleation and filament elongation during axial cell expansion. 相似文献
8.
Yong Wang Keping Chen Qin Yao Xiaodong Zheng Zhe Yang 《Journal of molecular evolution》2009,68(6):629-640
The basic helix-loop-helix (bHLH) proteins play important regulatory roles in eukaryotic developmental processes including
neurogenesis, myogenesis, hematopoiesis, sex determination, and gut development. Zebrafish is a good model organism for developmental
biology. In this study, we identified 139 bHLH genes encoded in the zebrafish genome. Phylogenetic analyses revealed that zebrafish has 58, 29, 21, 5, 19, and 5 bHLH members
in groups A, B, C, D, E, and F, respectively, while 2 members were classified as “orphan.” A comparison between zebrafish
and human bHLH repertoires suggested that both organisms have a certain number of specific bHLH members. Eight zebrafish bHLH genes were found to have multiple coding regions in the genome. Two of these, Bmal1 and MITF, are good anchor genes for identification of fish-specific whole-genome duplication events in comparison with mouse and chicken
genomes. The present study provides useful information for future studies on gene family evolution and vertebrate development.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
9.
10.
11.
12.
Yaju Wang Shilpa Rani Shankar Devaki Kher Belinda Mei Tze Ling Reshma Taneja 《The Journal of biological chemistry》2013,288(24):17654-17662
13.
14.
The dominant nana (na) mutation mapped to the top arm of Arabidopsis thalianachromosome 1 blocks cell proliferation in apical meristem (AM) of the inflorescence at its early development and suppresses the subsequent elongation by internode cells. Thenamutation reduces the sensitivity of cells of the inflorescence to gibberellin (GA) and paclobutrazole (PBZ) and prevents dormant and immature seeds from restoring the germinating ability in response to exogenous GA. On the other hand, exogenous GA and PBZ affects the onset of flowering, hypocotyl length, and leaf color; i.e., thena mutant displays an alteration of only several, rather than all, GA-dependent processes. Based on the results obtained, the product of the NA gene was assumed to play a role in the negative regulation of GA signaling and to act later than the products of the known GAI and SPY genes. 相似文献
15.
16.
Nathalie Gonzalez Laurens Pauwels Alexandra Baekelandt Liesbeth De Milde Jelle Van Leene Nienke Besbrugge Ken S. Heyndrickx Amparo Cuéllar Pérez Astrid Nagels Durand Rebecca De Clercq Eveline Van De Slijke Robin Vanden Bossche Dominique Eeckhout Kris Gevaert Klaas Vandepoele Geert De Jaeger Alain Goossens Dirk Inzé 《The Plant cell》2015,27(8):2273-2287
17.
18.
Jie Le Filip Vandenbussche Tinne De Cnodder Dominique Van Der Straeten Jean-Pierre Verbelen 《Journal of Plant Growth Regulation》2005,24(3):166-178
During elongation of the Arabidopsis hypocotyl, each cell reacts to light and hormones in a time- and position-dependent manner. Growth in darkness results in
the maximal length a wild-type cell can reach. Elongation starts at the base and proceeds in the acropetal direction. Cells
in the upper half of the hypocotyl can become the longest of the whole organ. Light strongly inhibits cell elongation all
along the hypocotyl, but proportionally more in the upper half. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid
(ACC) is known to stimulate hypocotyl elongation in the light. Here we show that this stimulation only occurs in cells of
the apical half of the hypocotyl. Moreover, ACC application can partially overcome light inhibition, whereas indole-3-acetic
acid (IAA) cannot. On low-nutrient medium (LNM) in the light, elongation is severely reduced as compared to growth on rich
medium, and both ACC and IAA can stimulate elongation to the levels reached on a nutrient-rich medium.
Furthermore, microtubule orientation was studied in vivo. During elongation in darkness, transverse and longitudinal patterns are clearly related with rates of elongation. In other
conditions, except for the association of longitudinally orientated microtubules with growth arrest, microtubule orientation
is merely an indicator of developmental age, not of elongation activity. A hypothesis on the relation between microtubules
and elongation rate is discussed. 相似文献
19.
The Fibrinogen Globe of Tenascin-C Promotes Basic Fibroblast Growth Factor-induced Endothelial Cell Elongation 总被引:2,自引:0,他引:2
下载免费PDF全文

Susanne Schenk Ruth Chiquet-Ehrismann Edouard J. Battegay 《Molecular biology of the cell》1999,10(9):2933-2943
To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe. 相似文献
20.