首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NOOT‐BOP‐COCH‐LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE‐ON‐PETIOLE1/2. The NBCLs are developmental regulators essential for plant shaping, mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen‐fixing nodules with persistent meristems in legumes. In legumes forming determinate nodules, without persistent meristem, the roles of NBCL genes are not known. We thus investigated the role of Lotus japonicus NOOT‐BOP‐COCH‐LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNA interference‐mediated silencing approaches. In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild‐type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules, rather than nectaries, at the base of their leaves. In Ljnbcl1, nectary development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and reorganization of the nodule vascular bundle vessels were observed on Ljnbcl1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to its role in floral patterning described in other plants, LjNBCL1 appears essential for the development of both secondary inflorescence meristem and floral meristem.  相似文献   

2.
The Medicago truncatula LATD/NIP gene is essential for the development of lateral and primary root and nitrogen-fixing nodule meristems as well as for rhizobial invasion of nodules. LATD/NIP encodes a member of the NRT1(PTR1) nitrate and di-and tri-peptide transporter family, suggesting that its function is to transport one of these or another compound(s). Because latd/nip mutants can have their lateral and primary root defects rescued by ABA, ABA is a potential substrate for transport. LATD/NIP expression in the root meristem was demonstrated to be regulated by auxin, cytokinin and abscisic acid, but not by nitrate. LATD/NIP''s potential function and its role in coordinating root architecture and nodule formation are discussed.Key words: nodule development, lateral root development, root architecture, symbiotic nitrogen fixation, Medicago truncatula, NRT1(PTR) gene familyUnlike most other plants, legumes form two kinds of lateral root organs: lateral roots and nitrogen-fixing root nodules that form in conjunction with compatible symbiotic rhizobium bacteria. Although the morphology and function of these two root organs is distinct, both require the function of the LATD/NIP gene, indicating shared genetic components for these two developmental processes and providing support for a model in which legume nodules evolved from a lateral root blueprint. Both lateral roots and nodules initiate in previously differentiated root cells in response to environmental and developmental cues mediated by hormones. Interestingly, regulation of nodules and lateral roots by hormones is often opposite, allowing formation of one organ or another depending on the conditions.  相似文献   

3.
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.  相似文献   

4.
The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls the development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented. Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza) is mobilized.  相似文献   

5.
6.
Nitrogen-fixing root nodules develop on legumes as a result of an interaction between host plants and soil bacteria collectively referred to as rhizobia. The organogenic process resulting in nodule development is triggered by the bacterial microsymbiont, but genetically controlled by the host plant genome. Using T-DNA insertion as a tool to identify novel plant genes that regulate nodule ontogeny, we have identified two putatively tagged symbiotic loci, Ljsym8 and Ljsym13, in the diploid legume Lotus japonicus. The sym8 mutants are arrested during infection by the bacteria early in the developmental process. The sym13 mutants are arrested in the final stages of infection, and ineffective nodules are formed. These two plant mutant lines were identified in progeny from 1112 primary transformants obtained after Agrobacterium tumefaciens T-DNA-mediated transformation of L. japonicus and subsequent screening for defects in the symbiosis with Mesorhizobium loti. Additional nontagged mutants arrested at different developmental stages were also identified and genetic complementation tests assigned all the mutations to 16 monogenic symbiotic loci segregating recessive mutant alleles. In the screen reported here independent symbiotic loci thus appeared with a frequency of ~1.5%, suggesting that a relatively large set of genes is required for the symbiotic interaction.  相似文献   

7.
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.

In soybean, nodule primordium formation involves GmPIN1-mediated polar auxin transport within primordium cells, and nodule enlargement involves the collaboration of GmPIN9d and GmPIN1-dependent auxin transport within nodule vasculature.  相似文献   

8.
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.  相似文献   

9.
Wrinkled-seeded pea mutants (Pisum sativum L., genotypes rrrbrb-, rrRbRb-, and RRrbrb-) have seeds with reduced, but different, starch content and modified starch properties. Analysis of these mutants revealed an enhanced capacity of root nodules for symbiotic nitrogen fixation and of host plant organs for assimilation of ammonium nitrogen. This observation was confirmed by morphological data on organization of symbiotic system, by elevated nitrogenase activity, high protein accumulation in plants due to nitrogen fixation, and by enhanced activity of glutamine synthase in leaves and glutamate dehydrogenase in roots of mutants, as compared with the organs of wild-type pea. It is supposed that the aforementioned advantages of mutants are related to accumulation in seeds of elevated protein reserves that satisfy their demand for nitrogen during formation of symbiotic systems.  相似文献   

10.
11.
The legume nodule, which houses nitrogen-fixing rhizobia, is a unique plant organ. Its homology with lateral roots has been inferred by a comparison with other nitrogen-fixing nodules, especially those formed on actinorhizal plants in response to Frankia inoculation or on Parasponia roots following inoculation with Bradyrhizobium species. These nodules are clearly modified lateral roots in terms of their structure and development. However, legume nodules differ from lateral roots and these other nodules in their developmental origin, anatomy, and patterns of gene expression, and, consequently, several other evolutionary derivations, including from stems, wound or defense responses, or the more ancient vesicular-arbuscular mycorrhizal symbiosis, have been postulated for the legume nodule. In this review, we first present a broad view of the legume family showing the diversity of nodulation occurrence and types in the different subfamilies and particularly within the subfamily Papilionoideae. We then define the typological and molecular criteria used to discriminate the basic organs — root, stem, leaf— of the plant. Finally, we discuss the possible origins of the legume nodule in terms of these typological and molecular bases.  相似文献   

12.
Podila  G.K.  Zheng  J.  Balasubramanian  S.  Sundaram  S.  Hiremath  S.  Brand  J.H.  Hymes  M.J. 《Plant and Soil》2002,244(1-2):117-128
Ectomycorrhizas are mutualistic symbiotic organs formed by interaction between plant roots and fungi. Mycorrhizal initiation, development and functional maintenance involve morphological changes that are mediated by activation and suppression of several fungal and plant genes. During the pre-infection stage, a harmonized cross-talk takes place between the symbionts, to determine their compatibility. Upon mutual recognition, the symbionts initiate further physiological and morphological changes essential for the formation of the symbiotic organ. In order to understand the molecular mechanisms underlying these events, we developed an interaction-specific cDNA library from Laccaria bicolor that represents fungal genes regulated by its interaction with Pinus resinosa roots. Membrane array analyses of these cDNAs suggested that a wide variety of genes are involved in the pre-infection stage processes.  相似文献   

13.
14.
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required.  相似文献   

15.
16.
Flowering and determinacy in maize   总被引:2,自引:0,他引:2  
All plant organs are produced by meristems, groups of stem cells located in the tips of roots and shoots. Indeterminate meristems make an indefinite number of organs, whereas determinate meristems are consumed after making a specific number of organs. Maize is an ideal system to study the genetic control of meristem fate because of the contribution from determinate and indeterminate meristems to the overall inflorescence. Here, the latest work on meristem maintenance and organ specification in maize is reviewed. Genetic networks, such as the CLAVATA components of meristem maintenance and the ABC programme of flower development, are conserved between grasses and eudicots. Maize and rice appear to have conserved mechanisms of meristem maintenance and organ identity. Other pathways, such as sex determination, are likely to be found only in maize with its separate male and female flowers. A rich genetic history has resulted in a large collection of maize mutants. The advent of genomic tools and synteny across the grasses now permits the isolation of the genes behind inflorescence architecture and the ability to compare function across the Angiosperms.  相似文献   

17.
Results of comparative morphological and genetic analyses are described for two major plant-microbe endosymbioses: N2-fixing nodules (with rhizobia or actinomycetes Frankia) and arbuscular mycorrhiza (with Glomales fungi). Development from the primordia formed de novo in root tissues is common for all known types of N2-fixing nodules. However, their structure varies greatly with respect to: (i) tissue topology (location of vascular bundles is peripheral in legumes but central in non-legumes); (ii) position of nodule primordium (inner or outer cortex in legumes, whereas pericycle in non-legumes); (iii) stability of apical meristem (persistent in the indeterminate nodules, transient in the determinate ones). In addition, legumes vary in ability to form compartments harboring endosymbiotic rhizobia that can be located intercellularly (infection threads) and intracellularly (symbiosomes). Using pea (Pisum sativum) symbiotic mutants, the nodule developmental program is dissected into a range of spatially and temporarily differentiated steps composing four sub-programs (development of endosymbiotic compartments; nodule histogenesis; autoregulation of nodulation; bacteroid differentiation). The developmental mutations are suggested in some cases to reverse the endosymbiotic system into the morphologically simpler forms some of which may correspond to the ancestral stages of nodule evolution. Origination of legume-rhizobial and actinorhizal symbioses is suggested to be based on a set of preadaptations many of which had been evolved in angiosperms during coevolution with arbuscular mycorrhizal fungi (e.g. inter- and intracellular maintenance of symbionts, their control via defence-like reactions and recognition of chitin-like molecules). Analysis of parallel morphological variation in symbiotic mutants and wild-growing legume species enables us to reconstruct the major stages of evolution for N2-fixing symbioses. This evolution proceeded to a sufficient degree independently from the basic physiological function of nodules (symbiotic N2-fixation) and possibly a recruiting of plant genes that initially fulfilled various "non-symbiotic" functions into the genetic networks monitoring plant-microbe interactions.  相似文献   

18.
Two different types of nitrogen-fixing root nodules are known — actinorhizal nodules induced byFrankia and legume nodules induced by rhizobia. While legume nodules show a stem-like structure with peripheral vascular bundles, actinorhizal nodule lobes resemble modified lateral roots with a central vascular bundle. To compare carbon metabolism in legume and actinorhizal nodules, sucrose synthase and enolase cDNA clones were isolated from a cDNA library, obtained from actinorhizal nodules ofAlnus glutinosa. The expression of the corresponding genes was markedly enhanced in nodules compared to roots. In situ hybridization showed that, in nodules, both sucrose synthase and enolase were expressed at high levels in the infected cortical cells as well as in the pericycle of the central vascular bundle of a nodule lobe. Legume sucrose synthase expression was studied in indeterminate nodules from pea and determinate nodules fromPhaseolus vulgaris by usingin situ hybridization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号