首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.  相似文献   

2.
3.
It is well documented that tumor cells undergo dramatic genetic and epigenetic changes during initial establishment as cell lines and in subsequent serial passaging, and that the resultant cell lines may have evolved significantly from the primary tumors from which they were derived. This has potential implications due to their widespread use in drug response experiments and studies of genomic function. One approach to optimizing the design of such cell line studies is to identify and use the cell lines that faithfully recapitulate critical features of primary tumors. To evaluate the epigenetic fidelity of breast cancer cell lines in the context of primary tumors, we performed methylation profiling of 55 well-characterized breast cancer cell lines on the Illumina HumanMethylation27 BeadChip platform, and compared them to publicly available methylation profiles of primary breast tumors. We found that the DNA methylation profiles of breast cancer cell lines largely retain the features that characterize primary tumors, although there are crucial differences as well. We describe these similarities and differences between primary tumors and breast cancer cell lines in detail, and develop a quantitative measure of similarity that is used to score each cell line with respect to how faithfully its methylation profile mirrors that of primary tumors.  相似文献   

4.
5.
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα+ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E2 and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα+ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.  相似文献   

6.
Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the ‘cross-talk’ between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/− cancer cells from the bulk tumor with consequent benefits for breast cancer patients.  相似文献   

7.
8.
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer. Migration of circulating tumor cells (CTCs) into the blood stream is an early event that occurs during carcinogenesis. We aimed to examine the presence of CTCs in complement to CT-scan in COPD patients without clinically detectable lung cancer as a first step to identify a new marker for early lung cancer diagnosis. The presence of CTCs was examined by an ISET filtration-enrichment technique, for 245 subjects without cancer, including 168 (68.6%) COPD patients, and 77 subjects without COPD (31.4%), including 42 control smokers and 35 non-smoking healthy individuals. CTCs were identified by cytomorphological analysis and characterized by studying their expression of epithelial and mesenchymal markers. COPD patients were monitored annually by low-dose spiral CT. CTCs were detected in 3% of COPD patients (5 out of 168 patients). The annual surveillance of the CTC-positive COPD patients by CT-scan screening detected lung nodules 1 to 4 years after CTC detection, leading to prompt surgical resection and histopathological diagnosis of early-stage lung cancer. Follow-up of the 5 patients by CT-scan and ISET 12 month after surgery showed no tumor recurrence. CTCs detected in COPD patients had a heterogeneous expression of epithelial and mesenchymal markers, which was similar to the corresponding lung tumor phenotype. No CTCs were detected in control smoking and non-smoking healthy individuals. CTCs can be detected in patients with COPD without clinically detectable lung cancer. Monitoring “sentinel” CTC-positive COPD patients may allow early diagnosis of lung cancer.  相似文献   

9.
Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX, to regulate the metastatic colonization potential of the human breast cancer cell line, MDA-MB-231. BAPN was administered daily to mice starting either 1 day prior, on the same day as, or 7 days after intracardiac injection of luciferase expressing MDA-MB-231-Luc2 cells. Development of metastases was monitored by in vivo bioluminescence imaging, and tumor-induced osteolysis was assessed by micro-computed tomography (μCT). We found that BAPN administration was able to reduce the frequency of metastases. Thus, when BAPN treatment was initiated the day before, or on the same day as the intra-cardiac injection of tumor cells, the number of metastases was decreased by 44%, and 27%, and whole-body photon emission rates (reflective of total tumor burden) were diminished by 78%, and 45%, respectively. In contrast, BAPN had no effect on the growth of established metastases. Our findings suggest that LOX activity is required during extravasation and/or initial tissue colonization by circulating MDA-MB-231 cells, lending support to the idea that LOX inhibition might be useful in metastasis prevention.  相似文献   

10.
《Translational oncology》2020,13(3):100740
Background: In search of novel biomarkers of response to bevacizumab in metastatic colorectal cancer (mCRC), we analyzed the expression and prognostic role of several proteins related to angiogenesis. Methods: A retrospective, multicenter study on 80 surgical samples from mCRC patients treated in first line with bevacizumab plus chemotherapy was accomplished. The following proteins were analyzed by immunohistochemistry: hERG1 potassium channel, β1-integrin, pAKT, NFkB, HIF-1α, HIF-2α, p53, VEGF-A, GLUT-1, and CA-IX. Data were analyzed in conjunction with the clinicopathological characteristics of the patients, KRAS status, response to bevacizumab, and follow-up. Results: (1) All the proteins were expressed in the samples, with statistically significant associations between HIF-1α and gender, HIF-2α and left colon, hERG1 and VEGF-A, β1-integrin and HIF-2α, GLUT-1 and both HIF-1α and HIF-2α, and CA-IX and VEGF-A. (2) At the univariate analysis, positivity for hERG1, VEGF-A, and the active form of HIF-2α (aHIF-2α), and the G3 histological grade showed a positive impact on progression-free survival (PFS). (3) hERG1 and aHIF-2α maintained their positive impact on PFS at the multivariate analysis. (4) hERG1 behaved as a protective factor for PFS independently on KRAS status. Conclusions: hERG1 and aHIF-2α might help to identify patients who would benefit from bevacizumab treatment.  相似文献   

11.
In mammals, the circadian rhythm central generator consists of interactions among clock genes, including Per1/2/3, Cry1/2, Bmal1, and Clock. Circadian rhythm disruption may lead to increased risk of cancer in humans, and deregulation of clock genes has been implicated in many types of cancers. Among these genes, Per2 is reported to have tumor suppressor properties, but little is known about the correlation between Per2 and HIF, which is the main target of renal cell carcinoma (RCC) therapy. In this study, the rhythmic expression of the Per2 gene was not detectable in renal cancer cell lines, with the exception of Caki-2 cells. In Caki-2 cells, HIF1α increased the amplitude of Per2 oscillation by directly binding to the HIF-binding site located on the Per2 promoter. These results indicate that HIF1α may enhance the amplitude of the Per2 circadian rhythm.  相似文献   

12.
Increased growth of residual tumors in the proximity of acute surgical wounds has been reported; however, the mechanisms of wound-promoted tumor growth remain unknown. Here, we used a syngeneic, orthotopic mouse model of breast cancer to study mechanisms of wound-promoted tumor growth. Our results demonstrate that exposure of metastatic mouse breast cancer cells (4T1) to SDF-1α, which is increased in wound fluid, results in increased tumor growth. Both, wounding and exposure of 4T1 cells to SDF-1α not only increased tumor growth, but also tumor cell proliferation rate and stromal collagen deposition. Conversely, systemic inhibition of SDF-1α signaling with the small molecule AMD 3100 abolished the effect of wounding, and decreased cell proliferation, collagen deposition, and neoangiogenesis to the levels observed in control animals. Furthermore, using different mouse strains we could demonstrate that the effect of wounding on tumor growth and SDF-1α levels is host dependent and varies between mouse strains. Our results show that wound-promoted tumor growth is mediated by elevated SDF-1α levels and indicate that the effect of acute wounds on tumor growth depends on the predetermined wound response of the host background and its predetermined wound response.  相似文献   

13.
14.
Ductal carcinoma in situ (DCIS) is an early stage noninvasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix (ECM) surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. Here we develop a mathematical model that incorporates the cross-talk between stromal and tumor cells, which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-β signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation. We then study a hybrid model for the interaction of cells with the tumor microenvironment (TME), in which epithelial cells (ECs) are modeled individually while the ECM is treated as a continuum, and show how these interactions affect the early development of tumors. Finally, we incorporate breakdown of the epithelium into the model and predict the early stages of tumor invasion into the stroma. Our results shed light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggest how epigenetic changes in transformed cells affect tumor progression.  相似文献   

15.
Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT.  相似文献   

16.
The inflammatory microenvironment plays an important role in the process of tumor development. Tumor necrosis factor-α (TNF-α), a key pro-inflammatory cytokine, has a significant role in this process. Natural medicinal products such as Withaferin A (WA) and Celastrol (Cel) have shown anti-cancer and anti-inflammatory properties that can be attributed to multiple mechanisms including, but not limited to, apoptosis induction due to the inhibition of proteasomal activities. This study aimed to investigate the effects of TNF-α in combination with WA or Cel in vitro in MDA-MB-231 breast cancer cells. TNF-α, when combined with WA or Cel, activated caspase-3 and -9 and downregulated XIAP in a dose-dependent manner, leading to induction of apoptosis in MDA-MB-231 breast cancer cells. The combination also caused accumulation of the proteasomal target protein IκBα, resulting in inhibition of the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results suggest that TNF-α could sensitize breast cancer cells MDA-MB-231 to WA and Cel, at least in part, through inhibiting the activation of NF-κB signaling, leading to XIAP inhibition with subsequent upregulation of caspase-3 and -9 activities. Thus, the anti-cancer activities of TNF-α are enhanced when combined with the natural proteasome inhibitors, WA or Cel.  相似文献   

17.
18.
The mammary gland is an organ that at once gives life to the young, but at the same time poses one of the greatest threats to the mother. Understanding how the tissue develops and functions is of pressing importance in determining how its control mechanisms break down in breast cancer. Here we argue that the interactions between mammary epithelial cells and their extracellular matrix (ECM) are crucial in the development and function of the tissue. Current strategies for treating breast cancer take advantage of our knowledge of the endocrine regulation of breast development, and the emerging role of stromal–epithelial interactions (Fig. 1). Focusing, in addition, on the microenvironmental influences that arise from cell–matrix interactions will open new opportunities for therapeutic intervention. We suggest that ultimately a three-pronged approach targeting endocrine, growth factor, and cell-matrix interactions will provide the best chance of curing the disease.Cellular interactions with the ECM are one of the defining features of metazoans (Huxley-Jones et al. 2007). Matrix proteins are among the most abundant in the body, and are integral components of cell regulation and developmental programs operating in all tissues. They provide structure and support to tissues, and they interact with cells through diverse receptors to guide development, patterning, and cell fate decisions (Streuli 2009). Together with cytokines and growth factors, and cell–cell interactions, the ECM determines whether cells survive, proliferate, differentiate, or migrate, and it influences cell shape and polarity (Streuli and Akhtar 2009). Cell–ECM interactions also are central in the assembly of the matrix itself, and in determining ECM organization and rigidity (Kadler et al. 2008; Kass et al. 2007). The cell–matrix interface is therefore pivotal in controlling both cell function and tissue structure, which together build organs into operational structures. Thus, elucidating precisely how the matrix directs cell phenotype is crucial for understanding mechanisms of development and disease.Mammary gland tissue contains epithelium and stroma ((Fig.Fig. 2). Mammary epithelial cells (MEC) form collecting ducts and, in pregnancy and lactation, milk-secreting alveoli (or lobules). The mammary epithelium is bilayered, with the inner luminal cells facing a central apical cavity and surrounded by the outer basal, myoepithelial cells. It also harbors stem and progenitor cells, which are the source of both luminal and myoepithelial cells (Visvader 2009). The epithelium is ensheathed by one of the main types of ECM, basement membrane (BM), which separates epithelium from stroma, and profoundly influences the development and biology of the gland (Streuli 2003). The stroma includes fibrous connective tissue ECM proteins, and a wide variety of cell types, including inter- and intralobular fibroblasts, adipocytes, endothelial cells, and innate immune cells (both macrophages and mast cells). The stroma is the support network for the epithelium, providing both nutrients and blood supply, and immune defenses, as well as physical structure to the gland. Importantly, each of the different stromal cell types secrete instructive signals that are crucial for various aspects of the development and function of the epithelium (Sternlicht 2006).Open in a separate windowFigure 1.Mammary gland development. Whole mounts of (A) virgin and (B) mid-pregnant mouse mammary gland. The thin, branched epithelial ducts that are characteristic of nonpregnant gland undergo dramatic alterations in pregnancy, when new types of epithelial structures, the milk-producing alveoli, emerge. The huge amount of proliferation that accompanies this change occurs in a discrete and controlled fashion. The formation of ducts and alveoli is under three types of environmental control. The first is long-range endocrine hormones, which includes estrogen, progesterone, glucocorticoids, and prolactin. The second is locally acting growth factors, which arise from stromal–epithelial conversation, and includes amphiregulin, FGF, HGF, and IGF. Finally, microenvironmental adhesive signals from adjacent cells (e.g., via cadherins) and from the ECM (e.g., integrin) have an equally central role in all aspects of mammary development and function. Importantly, the proliferation that occurs in breast cancer is not well controlled, indicating not only defects in growth signaling, but also in cellular organization. Chronologically, breast cancer drugs were initially developed against endocrine regulators, e.g., estrogen, and more recently against the stromal/epithelial regulators, e.g., receptor tyrosine kinases. A complete control of the disease will only happen when therapies targeting the microenvironmental adhesion breast regulators, e.g., cell–matrix interactions, are formulated, and used in combination.Open in a separate windowFigure 2.Ducts and alveoli in early pregnancy. Transverse section of ducts surrounded by a thick layer of collagenous (stromal) connective tissue containing fibroblasts and the fat pad. Also visible are small alveoli, which fill the fat pad by the time the gland lactates, but note that they are not surrounded collagen. A capillary is evident, and macrophages and mast cells are also present, though they require specific staining to visualize. A basement membrane is present directly at the basal surface of both ductal and alveolar epithelium (see Fig. 3).BMs surround three cell types in the mammary gland: the epithelium, the endothelium of the vasculature, and adipocytes (Fig. 3). These ECMs are thin, ∼100-nm thick sheets of glycoproteins and proteoglycans, which are constructed around an assembled polymer of laminins and a cross-linked network of collagen IV fibrils (Yurchenco and Patton 2009). Laminins form αβγ trimers, and in the breast at least four distinct isoforms are present: laminin-111, -322, and -511 and -521 (previously known as LM-1, 5, 10, and 11) (Aumailley et al. 2005; Prince et al. 2002). Similarly, BM proteoglycans are diverse and show complexity in their GAG chain modifications that vary with development of the mammary gland, though the major species is perlecan (Delehedde et al. 2001). BM proteins interact with MEC via integrins and transmembrane proteoglycans dystroglycan and syndecan, which all couple to the cytoskeleton and assemble signaling platforms to control cell fate (Barresi and Campbell 2006; Morgan et al. 2007). The best-studied MEC BM receptors are integrins, which are αβ heterodimers: they include receptors for collagen (α1β1 and α2β1), LM-111, -511, -521 (α3β1, α6β1, and α6β4), LM-322 (α3β1 and α6β4), and in some MECs fibronectin and vitronectin (α5β1 and β3 integrins) (Naylor and Streuli 2006). BM proteoglycans have a further signaling role via their capacity to bind growth factors and cytokines: They act both as a reservoir and a delivery vehicle to GF receptors, thereby controlling the passage of GFs across the BM (Iozzo 2005). Because of these diverse roles, the BM is a dominant regulator of the mammary epithelial phenotype.Open in a separate windowFigure 3.Alveolar and ductal architecture of breast epithelia shown through fluorescence and histological images. (A) An alveolus from a lactating mammary gland, showing luminal epithelial cells with cell–cell adhesion junctions (green, E-cadherin) and cell–matrix interactions (red, laminin-111). The central lumen is where milk collects. (B) The duct of a nonpregnant gland is stained with an antibody to laminin (brown) and counterstained with hematoxylin. Note that the laminin-containing basement membrane surrounds the ductal epithelial cells, and outside this lie collagenous connective tissue and adipocytes. Figure B courtesy of Dr. Rama Khokha.Apart from the endothelium and adipocytes, which contact BMs, the mammary stromal cells are mostly solitary and embedded within a fibrous ECM. Stromal matrix components include collagens type I and III, proteoglycans and hyaluronic acid, fibronectin and tenascins, and the composition varies with development and pregnancy (Schedin et al. 2004). Not a great deal is known about the specific interactions between breast stromal cells and their ECM, or how the matrix composition and density determines stromal cell function. However, it is becoming evident that the stromal matrix exerts a powerful influence on malignant breast epithelial cells, which invade the stroma and are further transformed by exposure to this distinct microenvironment (Kumar and Weaver 2009; Streuli 2006).In this article we focus on cell–matrix interactions within mammary epithelium, and reveal known and possible mechanisms for its control on ductal development, alveolar function, and cancer progression.  相似文献   

19.
Curcumin has been shown to mitigate cancer phenotypes such as invasive migration, proliferation, and survival by disrupting numerous signaling pathways. Our previous studies showed that curcumin inhibits integrin β4 (ITG β4)-dependent migration by blocking interaction of this integrin with growth factor receptors in lipid rafts. In the current study, we investigated the possibility that curcumin inhibits ITG β4 palmitoylation, a post-translational modification required for its lipid raft localization and signaling activity. We found that the levels of ITG β4 palmitoylation correlated with the invasive potential of breast cancer cells, and that curcumin effectively reduced the levels of ITG β4 palmitoylation in invasive breast cancer cells. Through studies of ITG β4 palmitoylation kinetics, we concluded curcumin suppressed palmitoylation independent of growth factor-induced phosphorylation of key ITG β4 Ser and Tyr residues. Rather, curcumin blocked autoacylation of the palmitoyl acyltransferase DHHC3 that is responsible for ITG β4 palmitoylation. Moreover, these data reveal that curcumin is able to prevent the palmitoylation of a subset of proteins, but not indiscriminately bind to and block all cysteines from modifications. Our studies reveal a novel paradigm for curcumin to account for much of its biological activity, and specifically, how it is able to suppress the signaling function of ITG β4 in breast cancer cells.  相似文献   

20.
E-cadherin is a transmembrane protein that serves as a cell adhesion molecule component of the adherens junction. We previously showed that cadmium induced γ-secretase-dependent E-cadherin cleavage via oxidative stress. In this study, we report that staurosporine (STS)-induced apoptosis induces caspase-2 and/or -8-dependent E-cadherin cleavage. STS increased γ-secretase-dependent cleavage of E-cadherin in breast cancer cells through caspase activation. The ability of the γ-secretase inhibitor DAPT and the caspase inhibitor zVAD-FMK to block E-cadherin cleavage provided support for these results. The cleavage of E-cadherin was blocked by caspase-2 and -8 inhibitors. Immunofluorescence analysis confirmed that, along with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulated in the cytosol. In the presence of an inhibitor of γ-secretase or caspase, the cleavage of E-cadherin was partially blocked. Our findings suggest that activation of caspase-2/-8 stimulated the disruption of cadherin-mediated cell–cell contacts in apoptotic cells via γ-secretase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号