首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing nucleotide involved in T cell Ca2+ signaling (Berg, I., Potter, B. V. L., Mayr, G. W., and Guse, A. H. (2000) J. Cell Biol. 150, 581-588). The objective of this study was to analyze whether the first subcellular Ca2+ signals obtained upon NAADP stimulation of T-lymphocytes depend on the functional expression of ryanodine receptors. Using combined microinjection and high resolution confocal calcium imaging, we demonstrate here that subcellular Ca2+ signals, characterized by amplitudes between approximately 30 and 100 nM and diameters of approximately 0.5 microM, preceded global Ca2+ signals. Co-injection of the ryanodine receptor antagonists ruthenium red and ryanodine together with NAADP abolished the effects of NAADP, whereas the D-myo-inositol 1,4,5-trisphosphate antagonist heparin and the Ca2+ entry blocker SKF&96365 were without effect. This pharmacological approach was confirmed by a molecular knock-down approach. Jurkat T cell clones with largely reduced expression of ryanodine receptors did not respond to microinjections of NAADP. Taken together, our data suggest that the Ca2+ release channel sensitive to NAADP in T-lymphocytes is the ryanodine receptor.  相似文献   

2.
Progesterone-induced maturation of Xenopus oocytes is a well known example of nongenomic signaling by steroids; however, little is known about the early signaling events involved in this process. Previous work has suggested that G proteins and G protein-coupled receptors may be involved in progesterone-mediated oocyte maturation as well as in other nongenomic steroid-induced signaling events. To investigate the role of G proteins in nongenomic signaling by progesterone, the effects of modulating Galpha and Gbetagamma levels in Xenopus oocytes on progesterone-induced signaling and maturation were examined. Our results demonstrate that Gbetagamma subunits, rather than Galpha, are the principal mediators of progesterone action in this system. We show that overexpression of Gbetagamma inhibits both progesterone-induced maturation and activation of the MAPK pathway, whereas sequestration of endogenous Gbetagamma subunits enhances progesterone-mediated signaling and maturation. These data are consistent with a model whereby endogenous free Xenopus Gbetagamma subunits constitutively inhibit oocyte maturation. Progesterone may induce maturation by antagonizing this inhibition and therefore allowing cell cycle progression to occur. These studies offer new insight into the early signaling events mediated by progesterone and may be useful in characterizing and identifying the membrane progesterone receptor in oocytes.  相似文献   

3.
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin proteins, suggesting a connection between GPCR conformational changes and interaction with GRKs and arrestins. Previously, we showed that by substitution of histidine for residues at the cytoplasmic side of helix 3 (H3) and helix 6 (H6) of the parathyroid hormone (PTH) receptor (PTHR), a zinc metal ion-binding site is engineered that prevents PTH-stimulated G(s) activation (Sheikh, S. P., Vilardaga, J.-P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033-17041). These data suggest that relative movements between H3 and H6 are critical for G(s) activation. Does this molecular event play a similar role in activation of GRK and arrestin and in PTHR-mediated G(q) activation? To answer this question, we utilized the two previously described mutant forms of PTHR, H401 and H402, which contain a naturally present histidine residue at position 301 in H3 and a second substituted histidine residue at positions 401 and 402 in H6, respectively. Both mutant receptors showed inhibition of PTH-stimulated inositol phosphate and cAMP generation in the presence of increasing concentrations of Zn(II). However, the mutants showed no Zn(II)-dependent impairment of phosphorylation by GRK-2. Likewise, the mutants were indistinguishable from wild-type PTHR in the ability to translocate beta-arrestins/green fluorescent protein to the cell membrane and were also not affected by sensitivity to Zn(II). These results suggest that agonist-mediated phosphorylation and internalization of PTHR require conformational switches of the receptor distinct from the cAMP and inositol phosphate signaling state. Furthermore, PTHR sequestration does not appear to require G protein activation.  相似文献   

4.
B Klangkalya  A Chan 《Life sciences》1988,42(23):2307-2314
The in vitro and in vivo effects of estrogen and progesterone on muscarinic and beta-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for beta-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, [3H]-dihydroalprenolol, to beta-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, [3H]-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor (IC50 = 37 microM, apparent Ki = 13 microM). Progesterone was found to decrease the apparent affinity of muscarinic receptors for [3H](-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate (4 micrograms) or progesterone (2.5 mg) for 4 days had no effect on the muscarinic or beta-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of beta-adrenergic receptors. The results of this study demonstrate that progestins are capable of interacting with the cardiac muscarinic receptors in vitro, and indicate that estrogen and progesterone have a synergistic effect to increase the receptor densities of muscarinic and beta-adrenergic receptors as well as to cause a decrease in the binding affinity of beta-adrenergic receptors in vivo.  相似文献   

5.
6.
7.
Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein.  相似文献   

8.
We have shown that progesterone (10 pM-10 nM) and progesterone covalently bound to bovine serum albumin (P-CMO BSA; 100 pM-1 microM) rapidly increased (within 5 s) the cytosolic free Ca(2+) concentration and inositol 1,4,5 trisphosphate (InsP(3)) formation in confluent female and male rat osteoblasts via a pertussis toxin-insensitive G-protein. The activation of G-proteins coupled to effectors such as phospholipase C (PLC) is an early event in the signal transduction pathway leading to InsP(3) formation. We used antibodies against the various PLC isoforms to show that only PLC-beta1 and PLC-beta 3 were involved in the Ca(2+) mobilization and InsP(3) formation induced by both progestins in female and male osteoblasts, whereas PLC-beta 2, PLC-gamma 1, and PLC-gamma 2 were not. We also used antibodies against the subunits of heterotrimeric G-proteins to show that the activation of PLC-beta 1 and PLC-beta 3 by both progestins involved the G alpha q/11 subunit, which was insensitive to pertussis toxin, whereas G alpha i, G alpha s, and G beta gamma subunits were not. The membrane effects were independent of the concentration of nuclear progesterone receptor, because the concentration of nuclear progesterone receptors was lower in male than in female osteoblasts. These data suggest that progesterone and P-CMO BSA, which does not enter the cell, directly activate G-protein leading to the very rapid formation of second messengers without involving the nuclear receptor.  相似文献   

9.
Mast cells proliferate in vivo in areas of active fibrosis, during parasite infestations, in response to repeated immediate hypersensitivity reactions and in patients with mastocytosis. We investigated how progesterone reduces the proliferation of HMC-1(560) mast cells that proliferate spontaneously in culture. Cells were incubated with 1 microM to 1 nM progesterone for 24-48 h. Progesterone (1 microM) reduced the spontaneous proliferation of HMC-1(560) mast cells to half that of cells cultured without hormone. [(3)H] thymidine incorporation was only 50% of control; there were fewer cells in G2/M and more cells in G0/G1. The amounts of phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK proteins were also reduced. In contrast progesterone had no effect on MAP kinase-phosphatase-1. The Raf/MAPK pathway, which depends on Src kinase activity, is implicated in the control of cell proliferation. HMC-1(560) cells incubated with the tyrosine kinase inhibitor PP1 proliferated more slowly than controls and had less phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK. The Csk homologous kinase (CHK), an endogenous inhibitor of Src protein tyrosine kinases, was also enhanced in progesterone-treated cells. In contrast, progesterone had no effect on the growth of cells transfected with siRNA CHK. We conclude that progesterone increases the amount of csk homologous kinase, which in turn reduces HMC-1(560) mast cell proliferation. This effect parallels decreases in the phosphorylated forms of Raf-1 and p42/44 MAPK, as their production depends on Src kinase activity.  相似文献   

10.
Heterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition. It was recently shown that phosducin-like protein (PhLP) modulated both Gbetagamma expression and subsequent signaling by chaperoning nascent Gbeta and facilitating heterodimer formation with Ggamma subunits (Lukov, G. L., Hu, T., McLaughlin, J. N., Hamm, H. E., and Willardson, B. M. (2005) EMBO J. 24, 1965-1975; Humrich, J., Bermel, C., Bunemann, M., Harmark, L., Frost, R., Quitterer, U., and Lohse, M. J. (2005) J. Biol. Chem. 280, 20042-20050). Here we demonstrate using a variety of techniques that DRiP78, an endoplasmic reticulum resident protein known to regulate the trafficking of several seven transmembrane receptors, interacts specifically with the Ggamma subunit but not Gbeta or Galpha subunits. Furthermore, we demonstrate that DRiP78 and the Gbeta subunit can compete for the Ggamma subunit. DRiP78 also protects Ggamma from degradation until a stable partner such as Gbeta is provided. Furthermore, DRiP78 interaction may represent a mechanism for assembly of specific Gbetagamma heterodimers, as selectivity was observed among Ggamma isoforms for interaction with DRiP78 depending on the presence of particular Gbeta subunits. Interestingly, we could detect an interaction between DRiP78 and PhLP, suggesting a role of DRiP78 in the assembly of Gbetagamma by linking Ggamma to PhLP.Gbeta complexes. Our results, therefore, suggest a role of DRiP78 as a chaperone in the assembly of Gbetagamma subunits of the G protein.  相似文献   

11.
Gastrin (G17) has a CCK-B receptor-mediated growth-promoting effect on the AR42J rat acinar cell line. We examined whether G17 inhibits apoptosis induced by serum withdrawal of AR42J cells and CHO-K1 cells stably expressing CCK-B receptors (CHO-K1/CCK-B cells). Cellular apoptosis was measured by flow cytometry and the terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end-labeling method. Serum withdrawal induced AR42J and CHO-K1/CCK-B cell apoptosis. Addition of 10 nM G17 reversed these effects. We examined the action of G17 (10 nM) on phosphorylation and activation of protein kinase B/Akt, a kinase known to promote cell survival. Akt phosphorylation and activation were measured by kinase assays and Western blots with an anti-phospho-Akt antibody. G17 stimulated Akt phosphorylation and activation. G17 induction of Akt phosphorylation was inhibited by the phosphoinositide 3-kinase (PI 3-kinase) inhibitors LY-294002 (10 microM) and wortmannin (200 nM) but not by the mitogen-activated protein kinase kinase 1 inhibitor PD-98059 (50 microM). To study the role of p38 kinase in G17 signaling to Akt, we examined the effect of G17 on p38 kinase activation and phosphorylation using kinase assays and Western blots with an anti-phospho-p38 kinase antibody. G17 induced p38 kinase activity at doses and with kinetics similar to those observed for Akt induction. The p38 kinase inhibitor SB-203580 inhibited G17 induction of Akt phosphorylation and activation at a concentration (10 microM) 10-fold higher than necessary to block p38 kinase (1 microM), suggesting the possible involvement of kinase activities other than p38 kinase. Transduction of AR42J cells with the adenoviral vector Adeno-dn Akt, which overexpresses an inhibitor of Akt, reversed the antiapoptotic action of G17. In conclusion, G17 promotes AR42J cell survival through the induction of Akt via PI 3-kinase and SB-203580-sensitive kinase activities.  相似文献   

12.
G proteins mediate signals from membrane G protein coupled receptors to the cell interior, evoking significant regulation of cell physiology. The cytoskeleton contributes to cell morphology, motility, division, and transport functions. This review will discuss the interplay between heterotrimeric G protein signaling and elements of the cytoskeleton. Also described and discussed will be the interplay between tubulin and G proteins that results in atypical modulation of signaling pathways and cytoskeletal dynamics. This will be extended to describe how tubulin and G proteins act in concert to influence various aspects of cellular behavior. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters.This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

13.
Thrombin induces astrocytoma cell rounding through a Rho-dependent pathway (Majumdar, M., Seasholtz, T. M., Goldstein, D., de Lanerolle, P., and Brown, J. H. (1998) J. Biol. Chem. 273, 10099-10106). The involvement of the G(12) family of G proteins and the role of specific Rho exchange factors in transducing signals from the thrombin receptor to Rho-dependent cytoskeletal responses was examined. Microinjection of cDNAs for activated Galpha(12) or Galpha(13) induced cell rounding, and antibodies to Galpha(12) or Galpha(13) blocked the response to thrombin. In contrast, activation or inhibition of Galpha(q) function had relatively little effect. The cytoskeletal response to Galpha(12) was inhibited by microinjection of C3 exoenzyme, indicating Rho dependence. Two Rho-specific guanine nucleotide exchange factors (GEFs), oncogenic lbc and p115, increased the percentage of rounded cells 4-5-fold, and this was inhibited by C3. Mutant GEFs lacking the Dbl homology (DH) domain required for exchange factor activity failed to induce cell rounding. However, the DH mutants of lbc and p115 were efficacious inhibitors of rounding induced by thrombin or Galpha(12). The effects of lbc were dependent on an intact pleckstrin homology domain, which may be required for appropriate targeting of the Rho-GEF. These findings identify the Galpha(12) protein family as transducers of thrombin signaling to the cytoskeleton and provide the first evidence that a Rho-GEF transduces signals between G protein-coupled receptors and Rho-mediated cytoskeletal responses.  相似文献   

14.
Surface functions during mitosis in rat basophilic leukemia cells   总被引:4,自引:2,他引:2  
At the entry into mitosis, cells abruptly lose membrane activities such as phagocytosis, pinocytosis, and capping. The present studies test if mitotic cells also resist functional responses to cell surface ligand-receptor interactions. The IgE receptors of RBL-2H3 rat basophilic leukemia cells were labeled with anti-dinitrophenol IgE (anti-DNP-IgE) and then cross-linked with multivalent ligands (DNP-bovine serum albumin [BSA]; DNP-B-phycoerythrin; DNP-BSA-gold). IgE-receptor cross-linking modulates cell surface organization and function and releases serotonin and other mediators of allergic and asthmatic reactions from interphase cells (Pfeiffer, J. R., JC. Seagrave, B. H. Davis, G. G. Deanin, and J. M. Oliver, 1985, J. Cell Biol., 101:2145-2155). It was found that anti-DNP-IgE-receptor complexes are preserved on the cell surface throughout mitosis; they continue to bind DNP-proteins, and the resulting antigen-IgE-receptor complexes can redistribute to coated pits on the cell surface. Furthermore, there is no loss of [3H]serotonin through mitosis. Nevertheless, antigen-stimulated [3H]-serotonin release is strongly impaired in mitotic-enriched as compared with mixed interphase or G1-enriched cell populations. In addition, antigen binding transforms the surface of interphase cells from a microvillous to a plicated topography and stimulates the uptake of fluorescein isothiocyanate-conjugated dextran by fluid pinocytosis. Mitotic cells maintain a microvillous surface topography after antigen treatment, and fluid pinocytosis virtually ceases from prometaphase to telophase. Phorbol myristate acetate, a tumor promoter that activates protein kinase C, restores surface ruffling activity to mitotic cells. Thus, the mitosis-specific freezing of membrane and secretory responses is most likely due to the failure of transmembrane signaling.  相似文献   

15.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

16.
G-protein-coupled bombesin receptors are capable of signaling through the G(i) protein even when receptor-coupling to G(q) is blocked by [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P (SpD), a neurokinin-1 receptor antagonist and "biased" agonist to bombesin receptors. As bombesin is a monocyte and tumor cell attractant, we were interested in the effects of SpD on cell migration. Chemotaxis of monocytes was tested in micropore filter assays. SpD was a dose-dependent agonist in monocyte migration and was not inhibited by antagonists to neurokinin-1 or -2 receptors. SpD failed to inhibit chemotaxis toward bombesin, suggesting that inhibition of bombesin receptor coupling to G(q) with SpD does not impair migratory responses elicited by bombesin. As pertussis toxin inhibited migration, coupling of receptors to G(i) may signal migration. Chemotaxis toward SpD was inhibited by bombesin receptor antagonists as well as by blocking signaling enzymes downstream of G(q) (phospholipase-3 and protein kinase C with wortmannin and bisindolylmaleimide, respectively), suggesting transactivation of G(q)-mediated chemotaxis signaling by SpD via bombesin receptors. Protein kinase C that induces sphingosine kinase activation and production of sphingosine-1-phosphate, which may lead to G(q)-dependent chemoattraction, was involved in SpD-dependent migration. Inhibition of sphingosine-1-phosphate production with dimethylsphingosine inhibited monocyte migration toward SpD. Data suggest that SpD induces migration in monocytes and signaling events involving activation of sphingosine kinase in a G(i) protein- and protein kinase C-dependent fashion. "Biased" agonism of SpD at bombesin receptors may affect normal and tumor cell migration.  相似文献   

17.
A GnRH-binding inhibitor (GnRH-BI) was recently purified from bovine ovaries. On the basis of amino acid composition and partial sequence analysis this antigonadotropic GnRH-BI was identified as histone H2A. In the present study the mechanism for the antigonadotropic action of histone H2A was examined and compared to that of GnRH and poly-L-lysine. The potential sites examined were the receptor-coupled pathway of second message synthesis including receptor binding of hormone, G protein activation, and adenylyl cyclase activation. Histone H2A inhibited (ID50 = 2 microM) the binding of hCG by membrane receptors from luteinized rat ovaries in a noncompetitive and dose-dependent manner. The binding of FSH by membrane receptors from immature rat ovaries was not inhibited by histone H2A. Binding of GnRH by pituitary membrane receptors was inhibited by histone H2A, and the ID50 of 8 microM was similar to that previously observed for GnRH binding sites in rat ovarian membranes. No high-affinity binding of histone H2A by rat ovarian membranes was detected. Near-maximal doses of histone H2A (7 microM), poly-L-lysine (10 microM), and GnRH (1 microM) inhibited LH-stimulated cAMP production in isolated rat luteal cells. Inhibition by H2A and poly-L-lysine was larger than by GnRH. Furthermore, histone H2A and poly-L-lysine inhibited cholera toxin (CT)-stimulated cAMP production, but GnRH did not. Like GnRH, neither histone H2A nor poly-L-lysine inhibited forskolin (FK)-stimulated cAMP production. In isolated rat granulosa cells, histone H2A and poly-L-lysine inhibited FSH-, CT-, and FK-stimulated cAMP production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Z Qian  L R Drewes 《FASEB journal》1991,5(3):315-319
Because receptors, G proteins, and phospholipases all exist within a membrane lipid environment, it is not unreasonable to assume that an enzyme capable of changing the lipid environment can affect the coupling relationship among these signal transducing components. Our previous study showed that a muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D via a G protein in brain. We demonstrate here that phosphatidylinositol phospholipase C and phosphatidylcholine phospholipase D are simultaneously activated within 15 s by muscarine in the presence of 1 microM GTP gamma S. More important, inhibition of phospholipase D by zinc attenuated carbamylcholine-induced activation of phospholipase C by 30%. Our additional evidence strongly indicates that the receptor-regulated phospholipase D plays an important modulatory role in agonist-stimulated phosphatidylinositol breakdown. This modulatory effect may be achieved by changing the membrane microenvironment in which phospholipase C and phosphoinositol lipids reside, consequently amplifying the inositol phospholipid signaling process. Our results lead us to postulate that the potential interaction between two different signaling pathways may provide a cell with intracellular coordination and enable the cell to achieve functional responses.  相似文献   

20.
Dimerization of several G protein-coupled receptors has recently been described, but little is known about its clinical and functional relevance. Cholecystokinin (CCK) and gastrin are structurally related gastrointestinal and neuronal peptides whose functions are mediated by two structurally related receptors in this superfamily, the type A and B CCK receptors. We previously demonstrated spontaneous homodimerization of type A CCK receptors and the dissociation of those complexes by agonist occupation (Cheng, Z. J., and Miller, L. J. (2001) J. Biol. Chem. 276, 48040-48047). Here, for the first time, we also demonstrate spontaneous homodimerization of type B CCK receptors, as well as heterodimerization of that receptor with the type A CCK receptor. Unlike type A CCK receptor dimers, the homodimerization of type B CCK receptors was not affected by ligand occupation. However, although heterodimers of type A and B CCK receptors bound natural agonists normally, they exhibited unusual functional and regulatory characteristics. Such complexes demonstrated enhanced agonist-stimulated cellular signaling and delayed agonist-induced receptor internalization. As a likely consequence, agonist-stimulated cell growth was markedly enhanced in cells simultaneously expressing both of these receptors. Our results provide the first evidence that heterodimerization of G protein-coupled receptors can form a more "powerful" signaling unit, which has potential clinical significance in promoting cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号