首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the influence of the age of the animals (13 to 53 weeks) on the rate of ethanol metabolism in vivo and the total activity of liver alcohol dehydrogenase and microsomal ethanol oxidizing system showed a progressive decline with age. These effects were observed concomitantly with a diminution in the content of cytochrome P-450 and microsomal functions related to oxidative and free-radical mediated reactions, namely, NADPH oxidase activity, NADPH-dependent oxygen uptake and NADPH-or t-butyl hydroperoxide-induced chemiluminescence. It is concluded that ageing is accompanied by a diminution in the total oxidative activity of the liver tissue, which would explain the depression in basal and ethanol-induced lipid peroxidation found in the oldest group of rats studied.  相似文献   

2.
Efficient conversion of carbon dioxide is of great interests to today's endeavors in controlling greenhouse gas emission. A multienzyme catalytic system that uses carbon dioxide and ethanol to produce L ‐lactate was demonstrated in this work, thereby providing a novel reaction route to convert bio‐based ethanol to an important building block for synthesis biodegradable polymers. The synthetic route has a unique internal cofactor regeneration cycle, eliminating the need of additional chemical or energy for cofactor regeneration. Lactate was successfully synthesized with 41% of ethanol converted in a batch reaction, while a turnover number of 2.2 day−1 was reached for cofactor regeneration in a reaction with continuous feeding of ethanol. A kinetic model developed based on reaction kinetic parameters determined separately for each reaction step predicted well the reaction rates and yields of the multienzyme reaction system. Biotechnol. Bioeng. 2011;108: 465–469. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
NAD was attached to the surface of glass beads by a diazo coupling procedure. The insolubilized NAD was shown to function as a coenzyme in the yeast alcohol dehydrogenase reaction.  相似文献   

4.
杠柳根皮乙醇提取液对蔬菜害虫小菜蛾的生物活性   总被引:9,自引:0,他引:9  
采用95%乙醇对杠柳(Periploca sepium Bunge)根皮进行热提取,以叶片浸渍法和点滴法测定了提取液对小菜蛾(Plutella xylostella L.)的杀虫活性及其作用方式.结果显示,杠柳乙醇提取液稀释100倍处理对小菜蛾3龄和4龄幼虫24 h后的非选择性拒食率分别为87.3%和96.3%;100倍液浸叶饲喂处理对小菜蛾2龄幼虫72 h后的校正死亡率为80%,对小菜蛾3龄幼虫24 h和48 h后的生长抑制率为100%.杠柳乙醇提取液对小菜蛾幼虫具有较高的生物活性,其作用方式包括拒食作用、胃毒作用和生长抑制作用.此外,乙醇提取液对小菜蛾幼虫还有一定的触杀和内吸效应,并对小菜蛾成虫产卵有明显的忌避活性,但对小菜蛾卵没有杀伤作用.  相似文献   

5.
覆盆子提取物联合唑类药物抗真菌活性研究   总被引:1,自引:1,他引:1  
目的 探讨中药覆盆子提取物联合唑类药物的体外抗真菌作用.方法 采用CLSI公布的M27-A方案微量液基稀释法和棋盘式微量稀释法,测定覆盆子提取物单用及联合唑类药物对不同念珠菌的MIC值和FICI指数.结果 覆盆子不同溶液提取物与氟康唑均表现出协同关系,以覆盆子醇提物为例,单用对念珠菌的MIC80测定值范围主要集中在0.16~1.25 mg/mL,与氟康唑合用后表现出协同关系(FICI≤0.5),且MIC80测定值范围降至0.01 ~0.04 mg/mL;合用后的氟康唑抗真菌活性也明显增强.另外,覆盆子醇提物与不同唑类药物合用后均有协同关系,其MIC80测定值由单用时大于10 mg/mL降至0.04 mg/mL.结论 覆盆子醇提物和唑类药物单用时对耐药念珠菌的抑菌作用较弱,但二者合用后表现出明显的协同关系,对耐药念珠菌的抑菌作用明显增强.  相似文献   

6.
非嗜食植物乙醇提取物对小菜蛾种群控制作用评价   总被引:1,自引:0,他引:1  
通过建立实验种群生命表和自然种群生命表,应用种群趋势指数(indexofpopulationtrend,I)和干扰作用控制指数(interferenceindexofpopulationcontrol,IIPC),评价花椒(Zanthoxylumbungeanum)、细叶桉(Eucalyptustereticornis)、烟草(Nicotianatabacum)、构树(Broussonetiapapyrifera)、羊蹄甲(Bauhiniavariegata)、假莲翘(Durantarepens)、飞扬草(Euphorbiahirta)、茶枯(Camelliaoleifera)8种非嗜食植物乙醇提取物对小菜蛾实验种群的控制作用,以及细叶桉、烟草、茶枯3种非嗜食植物乙醇提取物及其混合液对小菜蛾自然种群的控制作用.室内试验结果表明,在各种植物乙醇提取物作用下,I值从小到大的顺序为4.4842(细叶桉)、5.3702(花椒)、5.5199(飞扬草)、6.1609(假莲翘)、6.8937(羊蹄甲)8.0945(烟草)、9.8052(茶枯)、11.1382(构树),对照的I值为69.8964;IIPC值从小到大的顺序为0.0642(细叶桉)、0.0768(花椒)、0.0790(飞扬草)、0.0881(假莲翘)、0.0986(羊蹄甲)、0.1158(烟草)、0.1403(茶枯)、0.1594(构树),说明供试植物提取物对小菜蛾实验种群增长都有一定的抑制和干扰作用.小菜蛾自然种群生命表研究结果表明,在各种植物乙醇提取物作用下,I值从小到大的顺序为5.1997(细叶桉)、7.4160(烟草)、7.3644(茶枯)和3.1399(混合液),对照的I值为21.6232;IIPC值从小到大的顺序为混合液(0.1608)、细叶桉(0.2405)、茶枯(0.3549)、烟草(0.3695),说明供试植物提取物都能明显降低种群趋势指数,在一定程度上抑制和干扰小菜蛾自然种群增长,在生产中有一定的应用前景.  相似文献   

7.
Abstract: The effect of ethanol in larval medium on Bactrocera oleae larvae was examined at four concentrations. Ethanol exerted a differential effect on the three alcohol dehydrogenase allele frequencies. While originally being at equilibrium under laboratory conditions, after three generations of larval development in a diet containing ethanol at 1% concentration, Adh -F allele frequency increased, that of Adh -I dropped significantly and the frequency of Adh -S remained unaltered. Adh -S allele seems to be adapted in nature where only minor quantities of alcohol are present in the insects' natural host, while Adh -I is best adapted in the alcohol-free laboratory culture medium. The frequency of Adh -F allele remains unaltered when feral populations are introduced in the laboratory.  相似文献   

8.
Abstract A fragment of Methylobacter marinus A45 DNA has been cloned and sequenced, and an open reading frame has been identified that could code for a 46-kDa polypeptide. Comparison of the deduced amino acid sequence of the polypeptide against the protein data bank has revealed strong similarity with a number of alcohol dehydrogenases, with highest similarity towards class III alcohol dehydrogenases, which recently have been shown to be identical to glutathione-dependent formaldehyde dehydrogenases. We were unable to measure appreciable levels of NAD(P)-dependent formaldehyde dehydrogenases or alcohol dehydrogenase activities using aldehydes or primary or secondary alcohols in cell-free extracts from batch cultures of M. marinus A45. However, formaldehyde dehydrogenases activity was detected on zymograms. Our data suggest that, although NAD(P)-linked formaldehyde dehydrogenase or alcohol dehydrogenase activities are undetectable in cell-free extracts of most methylotrophs employing the ribulose monophosphate pathway for formaldehyde assimilation and dissimilation, the gene encoding formaldehyde dehydrogenase is present in M. marinus A45 and may be present in more of these organisms as well.  相似文献   

9.
This review discusses recent achievements in the field of cofactor regeneration for the nicotinamide cofactors NADH and NADPH. The examples discussed include alcohol dehydrogenases, formate dehydrogenase, glucose dehydrogenase and a hydrogenase. For the reaction either one-phase systems or two-phase systems in combination with an organic solvent are discussed. For the enantioselective reduction of 2-octanone to (R)-2-octanol it could be shown that enzyme coupled NADPH regeneration with glucose dehydrogenase and glucose results in shorter reaction times and higher yields when compared to the substrate coupled regeneration with 2-propanol.  相似文献   

10.
This review discusses recent achievements in the field of cofactor regeneration for the nicotinamide cofactors NADH and NADPH. The examples discussed include alcohol dehydrogenases, formate dehydrogenase, glucose dehydrogenase and a hydrogenase. For the reaction either one-phase systems or two-phase systems in combination with an organic solvent are discussed. For the enantioselective reduction of 2-octanone to (R)-2-octanol it could be shown that enzyme coupled NADPH regeneration with glucose dehydrogenase and glucose results in shorter reaction times and higher yields when compared to the substrate coupled regeneration with 2-propanol.

ADH: alcohol dehydrogenase; LDH: Lactose dehydrogenase; GDH: Glucose dehydrogenase; FDH: Formate dehydrogenase; LB-ADH: alcohol dehydrogenase from Lactobacillus brevis; HL-ADH: alcohol dehydrogenase from horse liver; TB-ADH: alcohol dehydrogenase from Thermoanaerobicum brockii; PS-GDH: Glucose dehydrogenase from Pseudomonas species; [BMIM][PF6]: Butyl-methyl-imidazoliumhexafluorophosphate  相似文献   

11.
A cell line ofDatura innoxia was selected in suspension culture to be resistant to 1% (vol/vol) ethanol (EtOHR). EtOHR cells were cross-resistant to 1% (vol/vol) methanol and 1% (vol/vol) 2-propanol but not 1% (vol/vol)n-propanol orn-butanol, whereas wild type (WT) cells were resistant only to methanol. Resistance in EtOHR cells is probably a result of a very low level of alcohol dehydrogenase (ADH) activity which was only 9 to 10% of that in WT cells and was undetectable during much of the EtOHR growth cycle. In the absence of ethanol, EtOHR cells have a I50 for the toxic ethanol analog allyl alcohol, which is nearly 3 times higher than that in WT cells. In the presence of ethanol, EtOHR cells have an I50 for allyl alcohol which is 12 times more than WT cells. This difference correlated well with the decrease in ADH activity found in EtOHR cells grown on ethanol. When ethanol was removed from the suspension medium, ADH activity in EtOHR cells gradually increased to WT levels. When re-exposed to ethanol after 200 cell generations, ADH activity quickly decreased and growth resumed after a 4- to 6-day lag period. Lipid analysis showed a 37% increase in total lipid in EtOHR cells, mostly in polar lipids, di- and triglycerides. The fatty acid composition of these lipid classes was shifted toward the more polyunsaturated. These lipid changes were probably a reflection of the increased plastid number in the EtOHR cells and may be a result of growth in ethanol rather than a reason for resistance. EtOHR cells seem to be regulatory mutants able to quickly lower ADH activity in the presence of ethanol.  相似文献   

12.
When cultured on a defined diet, ethanol was an efficient substrate for lipid synthesis in wild-type Drosophila melanogaster larvae. At certain dietary levels both ethanol and sucrose could displace the other as a lipid substrate. In wild-type larvae more than 90% of the flux from ethanol to lipid was metabolized via the alcohol dehydrogenase (ADH) system. The ADH and aldehyde dehydrogenase activities of ADH were modulated in tandem by dietary ethanol, suggesting that ADH provided substrate for lipogenesis by degrading ethanol to acetaldehyde and then to acetic acid. The tissue activity of catalase was suppressed by dietary ethanol, implying that catalase was not a major factor in ethanol metabolism in larvae. The activities of lipogenic enzymes, sn-glycerol-3-phosphate dehydrogenase, fatty acid synthetase (FAS), and ADH, together with the triacylglycerol (TG) content of wild-type larvae increased in proportion to the dietary ethanol concentration to 4.5% (v/v). Dietary ethanol inhibited FAS and repressed the accumulation of TG in ADH-deficient larvae, suggesting that the levels of these factors may be subject to a complex feedback control.This research was supported by National Institutes of Health Grant GM-28779 to B.W.G. and a Monash University Research Grant to S.W.M.  相似文献   

13.
- and -Ascorbic acids have been separated using liquid chromatography (LC) on a polymer-coated silica-based NH2 column and the -isomer has been quantified in human serum, rat serum, rat lung, rat lung perfusate, infant formula (SRM 1846) and mixed food sample (SRM 2383). The -isomer was observed only in trace amounts in the mixed food sample. The results demonstrate that ascorbic acid was stable on the column and completely recovered from supplemented samples of human serum and that this method of analysis is accurate, precise and has broad application exhibiting no dependence on the nature of the matrices evaluated herein.  相似文献   

14.
This study reports comparative evaluations of sugar and ethanol production from a native aspen (Populus tremuloides) between sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) and dilute acid (DA) pretreatments. All aqueous pretreatments were carried out in a laboratory wood pulping digester using wood chips at 170°C with a liquid to oven dry (od) wood ratio (L/W) of 3:1 at two levels of acid charge on wood of 0.56 and 1.11%. Sodium bisulfite charge on od wood was 0 for DA and 1.5 or 3.0% for SPORL. All substrates produced by both pretreatments (except DA with pretreatment duration of 0) had good enzymatic digestibility of over 80%. However, SPORL produced higher enzymatic digestibility than its corresponding DA pretreatment for all the experiments conducted. As a result, SPORL produced higher ethanol yield from simultaneous saccharification and fermentation of cellulosic substrate than its corresponding DA pretreatment. SPORL was more effective than its corresponding DA pretreatment in reducing energy consumption for postpretreatment wood chip size-reduction. SPORL, with lower energy input and higher sugar and ethanol yield, produced higher sugar and ethanol production energy efficiencies than the corresponding DA pretreatment.  相似文献   

15.
木质纤维素原料酶水解产乙醇工艺的研究进展   总被引:1,自引:1,他引:1  
木质纤维素原料预处理后,经水解、发酵等过程,可生产乙醇作为清洁燃料,这大大提高了农业和林业废弃物的利用率,减轻了环境污染,并为经济的可持续发展提供了保证。目前木质纤维素酶水解因其具有明显优势而受到重视,被普遍研究和采用。综述了近年来木质纤维素原料的预处理方法、酶与水解技术、发酵工艺以及发酵耦合分离技术的最新研究成果。  相似文献   

16.
At a moderate concentration (2.5%, v/v) dietary ethanol reduced the chain length of total fatty acids (FA) and increased the desaturation of short-chain FA in Drosophila melanogaster larvae with a functional alcohol dehydrogenase (ADH). The changes in length in total FA were postulated to be due to the modulation of the termination specificity of fatty acid synthetase. Because the ethanol-stimulated reduction in the length of unsaturated FA was blocked by linoleic acid, it was thought to reflect the properties of FA 9-desaturase. Although the ethanol-stimulated reduction in chain length of unsaturated FA was also observed in ADH-null larvae, ethanol promoted an increase in the length of total FA of the mutant larvae. Thus, the ethanolstimulated change in FA length was ADH dependent but the ethanol effect on FA desaturation was not. Ethanol also stimulated a decrease in the relative amount of phosphatidylcholine and an increase in phosphatidylethanolamine. Because similar ethanol-induced changes have been found in membrane lipids of other animals, ethanol may alter the properties of membranes in larvae. It is proposed that ethanol tolerance in D. melanogaster may be dependent on genes that specify lipids that are resistant to the detrimental effects of ethanol.This research was supported by National Institutes of Health Grant GM-28779 to B.W.G. and a Monash University Research Grant to S.W.M.  相似文献   

17.
A chemical selection scheme is presented for the isolation of rare Adh-positive Drosophila. It makes use of the fact that flies lacking detectable ADH activity die as adults or larvae on relatively low concentrations of ethanol in the medium. We have demonstrated that this procedure is a practical one by crossing two Adh-negative alleles, screening 1.5×106 embryos, and isolating 14 Adh-positive survivors.Supported by Postdoctoral Fellowship GM-57 from the National Institutes of Health to C. V. and by Grant GM-18254 from the NIH.Contribution No. 841 from the Department of Biology, The Johns Hopkins University.  相似文献   

18.
Summary It is possible to treat dissociated embryonic rat dorsal root ganglia in culture to inhibit proliferation of all nonneuronal cells except Schwann cells. Neurons have been shown to produce a mitogenic stimulus for Schwann cells under these conditions. Additionally, myelin-competent neurons induce Schwann cells to elaborate myelin sheaths. Groups of sibling cultures were exposed to various nonlethal concentrations of ethanol (0, 43, 86, or 172 mM) for 4 wk. Culture were assessed weekly by light microscopy in a blind fashion for evidence of Schwann cell proliferation and myelin formation. Ethanol adversely affected both Schwann cell proliferation and myelin formation in culture. No obvious differences in neuronal morphology were observed among the various groups of cultures by light or electron microscopy. These observations suggest that ethanol might interfere with Schwann cell proliferation and myelin formation in culture by one or both of the following means: a) inhibit neuronal production of signals for Schwann cell proliferation and myelination or b) impede Schwann cell responses to neuronal signals. Investigation of these possibilities in culture may provide insight into neuropathologic mechanisms operative in the fetal alcohol syndrome or alcohol-associated peripheral neuropathy in humans. This work was supported by the Department of Veterans Affairs, Washington, D.C.  相似文献   

19.
Drosophila melanogaster larvae were subjected to 10 generations of selection on 6% ethanol at 17, 25, and 30°C. For each temperature there was a significant (P<0.01) increase in the frequency of the Adh isoallele. Controls with no ethanol showed no change in the frequency of the Adh F isoallele. Larvae subjected to stronger selection on 8% ethanol confirmed the results. When adults of various ages were subjected to 16 and 32°C, the ADHF isoenzyme retained its twofold advantage in activity over ADHS regardless of the temperature. The same result was obtained with larvae at 16 and 35°C. Although some effect of temperature was demonstrated, it was concluded that the effect was not strong enough for temperature to be a selective factor under the conditions studied. However, ethanol is a strong selective factor for laboratory populations.  相似文献   

20.
To improve yield and productivity of ketose in NAD-dependent polyol oxidations, two enzymatic methods for regeneration of the oxidized coenzyme form have been compared and partly optimized for the batch conversion of xylitol into D-xylulose and D-sorbitol into D-fructose. Polyol oxidation was catalyzed by xylitol dehydrogenase from the yeast Galactocandida mastotermitis. Reduction of OM2 (apparently to H2O) by partially purified NADH dehydrogenase complex from Corynebacterium callunae could drive alcohol oxidations better than reductive amination of EaL-ketoglutarate by glutamate dehydrogenase. A fed-batch procedure was developed that overcame inhibition of glutamate dehydrogenase by α-ketoglutarate (Kis 25 mM), thus increasing the productivity of ketose almost 2-fold. For D-fructose production from D-sorbitol (0.1-0.3M) yields of < 90% and productivities up to 1.30g/(L.h) have been obtained. High conversion of up to 50g/L xylitol into D-xylulose for which xylitol dehydrogenase exhibits an about 80-fold higher specificity constant than for D-fructose required complexation of the ketose product with borate. In comparison with reductive amination by glutamate dehydrogenase, advantages of using NADH-dehydrogenase catalyzed regeneration of NAD for ketose production are (i) avoidance of byproduct formation, (ii) cheaper substrate (02 versus α-ketoglutarate), and (iii) easier process control (batch versus fed-batch).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号