首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetic constants for the glucuronidation of hyodeoxycholic acid in man were determined using microsomal preparations of liver, kidney and small bowel. The affinity of hyodeoxycholic acid for the microsomal hepatic and extrahepatic enzymes was in the same range as previously observed for the monohydroxy bile acid lithocholic acid and about 3-14-times the affinity for the dihydroxy bile acids chenodeoxycholic, deoxycholic and ursodeoxycholic acids. The Vmax values for glucuronidation of hyodeoxycholic acid with hepatic microsomes were 10-30-times higher and with kidney microsomes 50-110-times higher than for the bile acids lacking a 6 alpha-hydroxy group. The site of glucuronidation was determined by gas chromatographic-mass spectrometric analysis of derivatives of products formed after periodate and chromic acid oxidation. Hyodeoxycholic acid glucuronides synthesized with microsomal preparations from the three organs were all found to be conjugated at the 6 alpha position. This has previously been shown to be the site of glucuronidation of endogenous hyodeoxycholic acid glucuronide excreted in urine.  相似文献   

2.
The β-blocking agent oxprenolol is used therapeutically as the racemate. In humans and animals it is metabolized i.a. to ether glucuronide diastereomers. A stereoselective HPLC assay was developed to determine directly, without hydrolysis to their parent enantiomers, the oxprenolol glucuronides in biological samples. The glucuronide standards for this direct assay are prepared by incubation of rabbit liver microsomes with RS-oxprenolol. The glucuronides obtained are purified and concentrated with solid-phase extraction, and their concentration is measured by an indirect method, i.e. HPLC assay of the oxprenolol enantiomers after enzymatic hydrolysis with β-glucuronidase. The direct assay involves separation by HPLC using a C18-reversed-phase column, with UV detection at 274 nm; nalorphine is used as internal standard. On injection onto the column, without previous hydrolysis, the limit of detection is 20 ng for both glucuronides. The assay is sensitive, accurate and reproducible. The method is suitable for the assay of glucuronides in liver microsomal incubates and plasma.  相似文献   

3.
A method for analysis of profiles of conjugated progesterone metabolites and bile acids in 10 ml of urine and 1–4 ml of serum from pregnant women is described. Total bile acids and neutral steroids from serum and urine were extracted with octadecylsilane-bonded silica. Groups of conjugates were separated on the lipophilic ion-exchanger triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). Fractions were divided for steroid or bile acid analyses. Sequences of hydrolysis/ solvolysis and separations on TEAP-LH-20 permitted separate analyses of steroid glucuronides, monosulfates and disulfates and bile acid aminoacyl amidates, sulfates, glucuronides and sulfate-glucuronides. Radiolabelled compounds were added at different steps to monitor recoveries and completeness of separation, and hydrolysis/solvolysis of conjugates was monitored by fast-atom bombardment mass spectrometry. The extraction and solvolysis of steroid disulfates in urine were studied in detail, and extraction recoveries were found to be pH-dependent. Following methylation of bile acids, all compounds were analysed by capillary gas chromatography and gas chromatography—mass spectrometry of their trimethylsilyl ether derivatives. Semiquantification of individual compounds in each profile by gas—liquid chromatography had a coefficient of variation of less than 30%. The total analysis required 3 days for serum and 4 days for urine.  相似文献   

4.
The hepatic metabolism of 3-oxoandrost-4-ene-17 beta-carboxylic acid (etienic acid), a probable acidic catabolite of deoxycorticosterone, was investigated using rats prepared with an external biliary fistula. Metabolic products were identified by GC-MS after hydrolysis with beta-glucuronidase and by proton nuclear magnetic resonance after chromatographic purification of protected glucuronides. About 80% of the injected dose was secreted into bile in 20 hours. Three fully reduced etianic acids (3 alpha-hydroxy-5 alpha-, 3 beta-hydroxy-5 alpha-, 3 alpha-hydroxy-5 beta-androstan-17 beta-carboxylic acids) were identified as were several of their di- and trihydroxylated congeners. Glucuronides of these reduced and/or hydroxylated metabolites constituted over half of the recovered dose, with carboxyl-linked glucuronides predominating over 3-hydroxyl-linked glucuronides. The mode of glucuronidation correlated well with the ability of liver microsomes to form the corresponding compounds in vitro from the set of four 3,5-diastereomeric etianic acids.  相似文献   

5.
After the intraportal injection of retinol-6,7-(14)C to rats, the O-ether derivative of retinol, retinyl -glucosiduronate, appears in the bile. Both retinoyl -glucuronide and retinyl -glucosiduronate are also synthesized in vitro when washed rat liver microsomes are incubated with uridine diphosphoglucuronic acid (UDPGA) and either retinoic acid or retinol, respectively. The synthesis of retinoyl -glucuronide was also demonstrated in microsomes of the kidney and in particulate fractions of the intestinal mucosa. The glucuronides were characterized by their UV absorption spectra, by their quenching of UV light or fluorescence under it, by their thin-layer chromatographic behavior in two solvent systems, and by the identification of products released during their hydrolysis by -glucuronidase. With retinoic acid as the substrate, the UDP glucuronyl transferase of rat liver microsomes had a pH optimum of 7.0, a temperature optimum of 38 degrees C, and a marked dependence on the concentrations of both retinoic acid and UDPGA, but was unaffected by a number of possible inhibitors, protective agents, and competitive substrates. The conversion of retinal to retinoic acid and the synthesis of retinoyl -glucuronide from retinoic acid could not be detected in whole homogenates, cell fractions, or outer segments of the bovine retina.  相似文献   

6.
Mano N  Nishimura K  Narui T  Ikegawa S  Goto J 《Steroids》2002,67(3-4):257-262
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.  相似文献   

7.
The bile was determined to be the major excretory route for 14C-warfarin in the rat with approximately 10% of the administered dose excreted within 5 hours after injection. Relatively little radioactivity appeared in the faces, indicating that considerable enterohepatic recycling was taking place. Less than 4% of the radioactivity in the bile could be extracted with organic solvents. Following incubation of the bile with β-glucuronidase or rat gut flora, however, the bulk of the radioactivity was extractable. The extent of gut flora-mediated hydrolysis of these polar biliary warfarin conjugates was approximately the same as obtained with β-glucuronidase. Approximately 13 of the gut flora-hydrolyzable conjugates were labile and subject to nonenzymatic hydrolysis at 37 C for 24 h. Chromatographic examination of the extracts from β-glucuronidase-treated bile revealed the presence of warfarin and 4′-, 6-, 7-, and 8-hydroxywarfarin. Warfarin and 7-hydroxywarfarin were the most abundant metabolites in the extracts.  相似文献   

8.
The ability of rat liver microsomes to catalyze UDP-glucuronic acid-dependent glucuronidation of monohydroxy-bile acids was examined. The following bile acids were used as substrates, each as the 3 alpha and 3 beta epimer: 3-hydroxy-5 beta-cholanoic acid (C24), 3-hydroxy-5 beta-norcholanoic acid (C23), 3-hydroxy-5 beta-bisnorcholanoic acid (C22), 3-hydroxy-5 beta-pregnan-21-oic acid (C21), and 3-hydroxy-5 beta-androstane-17 beta-carboxylic acid (C20). The corresponding glucuronides were chemically synthesized to serve as standards and were characterized by thin-layer and gas-liquid chromatography as well as by nuclear magnetic resonance. Enzymatic glucuronidation reactions were optimized with respect to pH for each product formed and the kinetic parameters for each reaction were measured. Analytical techniques necessary to separate products from unreacted substrates and to identify them included thin-layer chromatography, gas-liquid chromatography, and nuclear magnetic resonance. It was found that the 3 alpha epimers of the five bile acids listed above enzymatically formed 3-O-glucuronides, C24 being the best substrate, followed by C21 and C20; C22 and C23 gave rise to only small amounts of this product. The 3 beta epimers of all bile acids tested were poorer substrates, although by a factor that varied widely. In addition to the expected hydroxyl-linked glucuronide, three of the 3 alpha-bile acids (C23, C22, and C20) and at least one 3 beta-bile acid (C20), gave rise to a novel metabolite in which the 1-OH of glucuronic acid was esterified with the steroidal carboxyl group (carboxyl-linked glucuronide).  相似文献   

9.
The activity of purified human hexosaminidases A and B toward hyaluronic acid (HA) isolated from cultured human skin fibroblasts was investigated. The cleavage of N-acetylglucosaminyl residues to monosaccharide N-acetylglucosamines by hexosaminidase isozymes was determined in the presence and absence of purified human β-glucuronidase. The pH optima of this reaction, with and without β-glucuronidase, were 4.5 for hexosaminidase A and 4.0 for hexosaminidase B. The hydrolysis of HA by both hexosaminidase isozymes proceeds linearily for at least 18 h in the presence of β-glucuronidase. Concentrations of 0.5–5 units of either isozyme showed a linear relationship with rate of hydrolysis. Without β-glucuronidase, hexosaminidase only cleaved the terminal N-acetylglucosamine residue. However, under optimal conditions, with β-glucuronidase, the hydrolytic activity of hexosaminidase B was about 30% as efficient as that of hexosaminidase A. Approximately 70% of the HA could be degraded by 5 units of hexosaminidase A in the presence of 0.5 unit of β-glucuronidase, as opposed to 25% degraded by hexosaminidase B. These results probably reflect intrinsic differences in the activities of the two isozymes. Since the substrate (HA) did not inhibit the hydrolysis of a synthetic substrate (4-methylumbelliferyl-β-glucosaminide) by hexosaminidase B, the linear kinetics of HA hydrolysis implies no product inhibition. These data indicate that native HA can be hydrolyzed by the combined activities of β-glucuronidase with hexosaminidase A or hexoaminidase B.  相似文献   

10.
Binding sites of bile acids on human serum albumin were studied using various probes: dansylsarcosine (site I probe), 7-anilinocoumarin-4-acetic acid (ACAA, site II probe), 5-dimethylaminonaphthelene-1-sulfonamide (DNSA, site III probe), cis-parinaric acid (probe for fatty acid binding site) and bilirubin. Bile acids competitively inhibited the binding of dansylsarcosine to human serum album whereas bile acids enhanced the binding of ACAA, DNSA, cis-parinaric acid and bilirubin. Considering the concentrations of bile acids required to inhibit the binding of dansylsarcosine to human serum albumin, the secondary binding site of bile acids may correspond to site I. Dissociation constants (Kd) of the primary binding sites of lithocholic and chenodeoxycholic acid to human serum albumin were approximately 0.2 and 4 μM, respectively, which was measured by equilibrium dialysis at 37° C. All the bile acids and their sulfates and glucuronides inhibited the binding of chenodeoxycholic acid to human serum albumin. Lithocholic and chenodeoxycholic acid and their sulfates and glucuronides exhibited more inhibition than cholic acid and its conjugates. In conclusion, bile acids may bind to a novel binding site on human serum albumin.  相似文献   

11.
Analytical data are presented on the free acids, the methyl esters, the methyl ester triacetates and the methyl ester triacetate semicarbazones of C-21 glucosiduronic acid conjugates of six adrenal hormones. Chromatographie mobilities of all of these compounds in three or more solvent systems are given. The stability of the steroidal glucosiduronic acids in alkali, their hydrolysis by β-glucuronidase and their partition coefficients in several solvent systems are also given.  相似文献   

12.
Glucuronidation is a crucial pathway of metabolism and excretion of endogenous compounds and xenobiotics. UDP-glucuronyltransferases, UGT, catalyse transformations of bilirubine, steroids and thyroid hormones, bile acids as well as exogenous compounds, including drugs, carcinogens, environmental pollutants and nutrient components. From therapeutic point of view, the participation of UGTs in drug metabolism is of particular significance. Polymorphism of UGT1A and UGT2B genes resulted in various susceptibility of substrates to conjugation with glucuronic acid. Deactivation of xenobiotics and the following excretion of hydrophilic conjugates is a common task of glucuronidation, which should lead to detoxification. However, a lot of glucuronides were known, which expressed the comparable or even higher reactivity than that of the native compound. There are, among others, acyl glucuronides of carboxylic acids, morphine 6-O-glucuronide or retinoid glucuronides. They are able to bind cellular macromolecules with low or high strength and, as a consequence, their toxicity is saved or even increased, respectively.  相似文献   

13.
Inhibition of glutathione S-transferase by bile acids.   总被引:4,自引:3,他引:1       下载免费PDF全文
The effects of bile acids on the detoxification of compounds by glutathione conjugation have been investigated. Bile acids were found to inhibit the total soluble-fraction glutathione S-transferase activity from rat liver, as assayed with four different acceptor substrates. Dihydroxy bile acids were more inhibitory than trihydroxy bile acids, and conjugated bile acids were generally less inhibitory than the parent bile acid. At physiological concentrations of bile acid, the glutathione S-transferase activity in the soluble fraction was inhibited by nearly 50%. This indicates that the size of the hepatic pool of bile acids can influence the ability of the liver to detoxify electrophilic compounds. The A, B and C isoenzymes of glutathione S-transferase were isolated separately. Each was found to be inhibited by bile acids. Kinetic analysis of the inhibition revealed that the bile acids were not competitive inhibitors of either glutathione or acceptor substrate binding. The microsomal glutathione S-transferase from guinea-pig liver was also shown to be inhibited by bile acids. This inhibition, however, showed characteristics of a non-specific detergent-type inhibition.  相似文献   

14.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal levels of 3-hydroxysteroid UDP-glucuronosyltransferase. Significant reductions of formation rates for hydroxyl-linked, but not carboxyl-linked, short-chain bile acid glucuronides were observed in hepatic microsomes from Wistar rats with low 3-hydroxysteroid UDP-glucuronosyltransferase activity. 3-Hydroxysteroid UDP-glucuronosyltransferase, purified to homogeneity from Sprague-Dawley liver microsomes, catalyzed the 3-O-glucuronidation of 3 alpha, 5 beta C20-23 bile acids, as well as of lithocholic and isolithocholic acids (C24). The apparent Michaelis constants (KM) for short-chain bile acids were similar to the value obtained for androsterone. 3 alpha, 5 beta-C20 and 3 beta, 5 beta-C20 competitively inhibited glucuronidation of androsterone by the purified 3-hydroxysteroid UDP-glucuronosyltransferase. Purified 17 beta-hydroxysteroid and p-nitrophenol UDP-glucuronosyltransferases did not catalyze the glucuronidation of bile acids. In addition, none of the purified transferases catalyzed the formation of carboxyl-linked bile acid glucuronides. The results show that 3-hydroxysteroid UDP-glucuronosyltransferase, an enzyme specific for 3-hydroxyl groups of androgenic steroids and some conventional bile acids, also catalyzes the glucuronidation of 3 alpha-hydroxyl (but not carboxyl) groups of 3 alpha, 5 beta short-chain bile acids.  相似文献   

15.
Multiple forms of β-glucuronidase have been demonstrated using sucrose gradient and polyacrylamide gel isoelectric focusing techniques in 6 m urea. Microsomal β-glucuronidase, a membrane-bound enzyme, was solubilized from lysosome-free, Ca2+-precipitated microsomes by detergents and isolated by chromatography on columns of rabbit anti-rat preputial gland β-glucuronidase antibody bound to Sepharose. The enzyme has a pI of 6.7. Polyacrylamide gel isoelectric focusing resolves the microsomal enzyme into three components, each of which is protease sensitive. The protease-modified microsomal enzyme is very similar to several forms of β-glucuronidase in lysosomes. The lysosomal β-glucuronidase, isolated from osmotically shocked lysosomes, is very heterogeneous after isoelectric focusing over the range pI 5.4–6.0. The lysosomal enzyme can be resolved into 10–12 bands by polyacrylamide gel isoelectric focusing. The more acid forms of the lysosomal enzyme are neuraminidase sensitive, suggesting they may be sialoglycoproteins.  相似文献   

16.
Acyl glucuronides are known to be labile conjugates, which undergo hydrolysis and bind irreversibly to proteins. The lipid-regulating agent (±)-beclobrate is immediately converted to the free acid after oral administration. Further metabolism leads to formation of the corresponding diastereomeric acyl glucuronides. Beclobric acid glucuronides were quantified by indirect measurement with an HPLC method based on chiral fluorescent derivatization of the carboxylic acid and subsequent normal-phase chromatography. The renal clearance of unchanged drug is low, with almost all drug excreted into urine as glucuronic acid conjugates. Beclobric acid glucuronide is also detectable in plasma. In vitro degradation studies with beclobric acid glucuronide (at a concentration of 5 μM in 150 mM phosphate buffer pH 7.4) exhibited a minor tendency for acyl migration and hydrolysis, i.e., a higher stability than has been observed for the acyl glucuronides of most other drugs. The in vitro degradation half-lives of the two beclobric acid β-1-O-acyl glucuronides were 22.7 and 25.7 h. After incubation with pooled plasma and human serum albumin in buffer pH 7.4 irreversible binding was measured in vitro. No significant difference between the two enantiomers was detected with respect to the magnitude of in vitro irreversible binding. In 3 healthy male volunteers the extent of irreversible binding of both beclobric acid enantiomers to plasma proteins was investigated after single and multiple oral doses of racemic beclobrate (100 mg once daily). Irreversible binding of both enantiomers was observed in all volunteers. The adduct densities for (?)- and (+)-beclobric acid after single 100 mg beclobrate doses were 0.147 × 10?4 and 0.177 × 10?4 mol/mol protein. Multipie dosing increased irreversible binding 3- to 4-fold. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Comparative binding of albumin and -glucuronidase by rat liver microsomes   总被引:1,自引:0,他引:1  
Rat liver microsomes, free of lysosomal β-glucuronidase, were subjected to sonication. Under the experimental conditions used, 95 % of the microsomal β-glucuronidase activity was solubilized while only 11 % of the albumin was released in the soluble fraction. The results indicate that microsomal β-glucuronidase is not contained in the cisternae of the microsomal vesicles but is attached to the membranes by bonds that are broken by sonication before the membranes are disrupted.  相似文献   

18.
Procedures based on gas chromatography were established to determine pethidine and its major metabolites in human urine. The chromatographic system consisted of a glass column packed with 3% (w/w) SP2250 on Chromosorb W (80–100 mesh) linked to a nitrogen—phosphorus detector. Diethyl ether was used as the extraction solvent. Pethidinic and norpethidinic acids, and their conjugated metabolites (after β-glucuronidase treatment) were determined after conversion into pethidine and norpethidine by acid-catalysed esterification. The retention times of pethidine, norpethidine and chlorpheniramine (internal standard) were 3.3, 4.5 and 7.5 min, respectively. The amount of unchanged drugs and metabolites excreted varied considerably among the subjects. The mean 24-h urinary recoveries in eight patients of pethidine, norpethidine, pethidinic acid, norpethidinic acid, and the glucuronides of pethidinic and norpethidinic acids were 6.62 ± 5.05, 4.33 ± 1.19, 18.9 ± 6.29, 9.10 ± 4.26, 15.1 ± 3.02 and 7.57 ± 2.28%, respectively. This indicates that the major metyabolic pathways of pethidine in the eight patients were hydrolysis followed by conjugation. Over 60% of the dose was accounted for in 24 h after intramuscular administration of 1 mg/kg pethidine.  相似文献   

19.
A method is described for the measurement, by difference, of the sulphate fractions of faecal bile acids. A solvolysis step (for the deliberate hydrolysis of the bile acid sulphates) was added to the procedure of sample homogenisation, extraction, enzymatic hydrolysis and thin-layer chromatography. The bile acids were quantitated by gas—liquid chromatography of their methyl ester and trifluoroacetate methyl ester derivatives on 3% QF-1 columns. The total bile acid excretion in 15 control subjects was 603 ± 71 mg/24 h ( ± S.E.M.). The major bile acid peaks (mg/24 h) were: lithocholic acid, without solvolysis 118 ± 26 and including solvolysis 175 ± 30; deoxycholic acid 60 ± 8 and 90 ± 18 and chenodeoxycholic acid 13 ± 7 and 15 ± 7. It was concluded that bile acid sulphates may form a considerable proportion of the total bile acids excreted in man.  相似文献   

20.
Biliverdin and bilirubin mono- and di-beta-glucuronides were prepared by nucleophilic substitution of the 1-O-mesyl derivative of alpha-ethoxyethyl-protected glucuronic acid (compound II) with the tetrabutylammonium salts of biliverdin and bilirubin. Removal of the acetal-protecting groups by mild acid treatment yielded biliverdin glucuronides, which were reduced to bilirubin glucuronides. Depending on reaction conditions the pure beta-anomers or mixtures highly enriched in the beta-anomers were obtained. The biliverdin and bilirubin glucuronides were identical with pigments derived from bile. They were characterized as the IX alpha isomers and the beta-anomers by alkaline hydrolysis, n.m.r. spectroscopy, hydrolysis with beta-glucuronidase and conversion into dipyrrolic azopigments. Model reactions of the 1-O-mesylate (II) with other nucleophiles also were performed, i.e. the acetate anion and various alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号