首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A sensitive, reliable, and easily performed procedure is described for the prenatal and postnatal detection of inborn errors of propionate, methylmalonate, and cobalamin metabolism using cultured amniotic cells and skin fibroblasts. With this assay, control fibroblast lines incorporated a mean of 6.89 nanoatoms 14C/mg protein from [1-14C]propionate into trichloroacetic acid (TCA)-precipitable cell material in 10h. Twenty-five mutant fibroblast lines from patients with propionicacidemia or one of the methylmalonicacidemias fixed 0.04 to 0.93 nanoatoms 14C/mg. Considerable variation was observed, both among and within discrete mutant classes, with respect to the residual amount of propionate pathway activity, possibly reflecting further molecular heterogeneity in these disorders.We applied this procedure to cultured amniotic cells from controls and 4 midtrimester pregnancies at risk for methylmalonicacidemia and diagnosed one fetus with a methylmalonyl CoA apomutase defect and 3 fetuses which were unaffected.Presented in part at the annual meeting of the Society for Pediatric Research, St. Louis, Missouri, April 1976.  相似文献   

2.
Summary The comparative metabolic effects of fructose and glucose were determined in human fibroblast cultures. Cells were grown in four different media containing 5.5 and 27.5 mM of glucose and fructose, respectively. For these two hexoses, we compared their uptake, consumption, and conversion into14CO2 and14C-lipids. D-Fructose was taken up in fibroblasts by an unsaturable process and its consumption was much smaller than that ofD-glucose. Whatever the experimental procedure, the glycogen content of cells grown in fructose media was significantly lower than of those grown in glucose media. Labeling of fructose and glucose with14C showed that more carbon from fructose than from glucose was incorporated into CO2 and glycerolipids. The relative distribution of14C in the different lipid fractions was similar for both hexoses. These results indicated that the pathways of intermediary metabolism in fibroblast cultures were influenced by the nature of the carbohydrate present in the culture medium and that fructose was a better lipogenic substrate than glucose in human fibroblast cultures. This work was supported by grants for the Institut National de la Santé et de la Recherche Medicale (ATP 82-79-114).  相似文献   

3.
Metastasis is the most devastating aspect of cancer, however we know very little about the mechanisms of local invasion, the earliest step of metastasis. During tumor growth CD11b+Gr1+ cells, known also as MDSCs, have been shown to promote tumor progression by a wide spectrum of effects that suppress the anti-tumor immune response. In addition to immunosuppression, CD11b+Gr1+ cells promote metastasis by mechanisms that are currently unknown. CD11b+Gr1+ cells localize near fibroblasts, which remodel the ECM and leave tracks for collective cell migration of carcinoma cells. In this study we discovered that CD11b+Gr1+ cells promote invasion of mammary carcinoma cells by increasing fibroblast migration. This effect was directed by secreted factors derived from CD11b+Gr1+ cells. We have identified several CD11b+Gr1+ cell secreted proteins that activate fibroblast migration, including CXCL11, CXCL15, FGF2, IGF-I, IL1Ra, Resistin, and Shh. The combination of CXCL11 and FGF2 had the strongest effect on fibroblast migration that is associated with Akt1 and ERK1/2 phosphorylation. Analysis of subsets of CD11b+Gr1+ cells identified that CD11b+Ly6ChighLy6Glow cells increase fibroblast migration more than other myeloid cell populations. Additionally, tumor-derived CD11b+Gr1+ cells promote fibroblast migration more than splenic CD11b+Gr1+ cells of tumor-bearing mice. While TGFβ signaling in fibroblasts does not regulate their migration toward CD11b+Gr1+ cells, however deletion of TGFβ receptor II on CD11b+Gr1+ cells downregulates CXCL11, Shh, IGF1 and FGF2 resulting in reduced fibroblast migration. These studies show that TGFβ signaling in CD11b+Gr1+ cells promotes fibroblast directed carcinoma invasion and suggests that perivascular CD11b+Ly6ChighLy6Glow cells may be the stimulus for localized invasion leading to metastasis.  相似文献   

4.
We describe a method for studying the phosphorylation of the S6 ribosomal protein in intact cells. The procedure has the advantage of using few cells, little 32Pi, and by using an air-driven centrifuge, many samples can be processed in a short time. Metabolically labeling the ribosomes with [3H]uridine before the experiment provides a measure of ribosome yield. The amount of 32Pi incorporated into proteins other than S6, which cosediment with the ribosomes, increases by the same amount as the specific activity of [32P]ATP increases, when the cells are stimulated by prostaglandin F, insulin, epidermal, or fibroblast growth factor, or serum; whereas the 32Pi incorporated into S6 increases by a factor greater than the increase in the specific activity of [32P]ATP. We show that the phosphate on S6 turns over at least as rapidly as does the phosphate on ATP. This last observation allows us to use a procedure, which we have outlined for determining the absolute amount of phosphate added to S6 due to a stimulus.  相似文献   

5.
Cell cultures of human skin fibroblasts, myoblasts, and fused muscle cells were grown in the presence of [14C]leucine or a mixture of [14C]amino acids. The proteins synthesised and secreted or leaked into the culture medium during radio-labelling were separated by one and two-dimensional PAGE and detected by fluorography. Four major bands of Mr 54 kD, 52 kD, 51 kD, and 49 kD were present at greatly increased concentration in fibroblast media. These fibroblast-specific polypeptides can be readily detected in myoblast/fibroblast cocultures with fibroblast content as low as 5%.  相似文献   

6.
A purification procedure and partial characterization of bovine pituitary fibroblast growth factor (FGF) are described. The steps of the published methods [3,4] which yield inhomogeneous material, were retained, with modifications. The final isolation, with an additional purification of ~20-fold, was achieved by electro-phoresis in polyacrylamide gels at acid pH. The mitogenic peptide has a molecular weight of 14,500–15,00 as determined on SDS gels, chromatographs as a monomer in nondenaturing conditions, and is active at the picomolar level in effecting the incorporation of 3H-thymidine in Balb/c 3T3 cells. A preliminary amino acid composition is presented.  相似文献   

7.
Pulmonary fibrosis is a potentially fatal consequence of treatments for malignancy and is an increasing problem in bone marrow transplant patients and in cases of allogeneic lung transplant. The fibrotic response is characterized by increases in lung fibroblast number and collagen synthesis. This laboratory previously isolated stable, functionally distinct, murine lung fibroblast subsets (Thy-1+ and Thy-1) to study the contribution of fibroblast subpopulations in lung fibrosis. The fibroblast fibrotic response may be induced by cytokines secreted by infiltrating cells such as T lymphocytes and mast cells. In the current study two key regulatory cytokines, interferon-γ (IFN-γ) and interleukin-4 (IL-4), were investigated for their effects on the collagen synthesis of murine lung fibroblast subsets. IL-4 and IFN-γ are putatively characterized as fibrogenic and anti-fibrogenic cytokines, respectively, and are found in repairing lung tissue. Stimulation with recombinant IL-4 induced a 100% increase in total collagen production only by Thy-1+ fibroblasts. Types I and III collagen mRNA were increased in the Thy-1+ fibroblasts, unlike the Thy-1 subset. In contrast, IFN-γ decreased constitutive collagen production by more than 50% in Thy-1+ and Thy-1 fibroblasts. Interestingly, the two subsets utilized their collagen production machinery (collagenase, tissue inhibitors of metalloproteinases) differently to further regulate collagen turnover in response to IL-4 and IFN-γ. Overall, our data support the hypothesis that IL-4 is fibrogenic and IFN-γ is anti-fibrogenic. Moreover, selective expansion of IL-4 responsive fibroblasts (e.g., Thy-1+) may be important in the transition from repair to chronic fibrosis. In addition, these data suggest that an inflammatory response dominated by IL-4-producing Th2 lymphocytes and/or mast cells will promote fibrosis development. © 1996 Wiley-Liss, Inc.  相似文献   

8.
We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy.  相似文献   

9.
It has been proved that co-cultivation of human neuroblastoma cells and human fibrolast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76×106 viable cells/mL from 9×105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5×106 viable cells/mL, which was much higher than that from fed-batch cultivation. The nerve cell growth was greatly enhanced in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from, human fibroblast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.  相似文献   

10.
Summary The number of medical applications using autologous fibroblasts is increasing rapidly. We investigated thoroughly the procedure to isolate cells from skin using the enzymatic tissue dissociation procedure. Tissue digestion efficiency, cell viability, and yield were investigated in relation to size of tissue fragments, digestion volume to tissue ratio, digestion time, and importance of other protease activities present in Clostridium histolyticum collagenase (CHC) (neutral protease, clostripain, and trypsin). The results showed that digestion was optimal with small tissue fragments (2–3 mm3) and with volumes tissue ratios ≥2 ml/g tissue. For incubations ≤10 h, the digestion efficiency and cell isolation yields were significantly improved by increasing the collagenase, neutral protease, or clostripain activity, whereas trypsin activity had no effects. However, a too high proteolytic activity of one of the proteases present in CHC digestion solution or long exposure times interfered with cell viability and cell culture yields. The optimal range of CHC proteases activities per milliliter digestion solutions was determined for digestions ≤10 h (collagenase 2700–3900 Mandl U/ml, neutral protease 5100–10,000 caseinase U/ml, and clostripain 35–48 BAEE U/ml) and for longer digestions (>14 h) (collagenase 1350–3000 U/ml, neutral protease 2550–7700 U/ml, and clostripain 18–36 U/ml). Using these conditions, a maximum fibroblast expansion was achieved when isolated cells were seeded at 1×104 cells/cm2. These results did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous dermal tissue in a clinically acceptable time frame of 3 wk.  相似文献   

11.
Accurate regulation of dermal fibroblast function plays a crucial role in wound healing. Many fibrotic diseases are characterized by a failure to conclude normal tissue repair and the persistence of fibroblasts inside lesions. In the present study we demonstrate that endoglin haploinsufficiency promotes fibroblast accumulation during wound healing. Moreover, scars from endoglin-heterozygous (Eng+/−) mice show persisting fibroblasts 12 days after wounding, which could lead to a fibrotic scar. Endoglin haploinsufficiency results in increased proliferation and migration of primary cultured murine dermal fibroblasts (MDFs). Moreover, Eng+/− MDF have diminished responses to apoptotic signals compared with control cells. Altogether, these modifications could explain the augmented presence of fibroblasts in Eng+/− mice wounds. We demonstrate that endoglin expression regulates Akt phosphorylation and that PI3K inhibition abolishes the differences in proliferation between endoglin haploinsufficient and control cells. Finally, persistent fibroblasts in Eng+/− mice wound co-localize with a greater degree of Akt phosphorylation. Thus, endoglin haploinsufficiency seems to promote fibroblast accumulation during wound healing through the activation of the PI3K/Akt pathway. These studies open new non-Smad signaling pathway for endoglin regulating fibroblast cell function during wound healing, as new therapeutic opportunities for the treatment of fibrotic wounds.  相似文献   

12.
Evaluation of the technology for analysis of incorporation of [3H]TTP into nuclei of Chinese hamster fibroblast and HeLa nuclei was performed. The synthesis of the DNA was dependent on all four deoxyribonucleotide triphosphates, Mg2+ and ATP. Nuclei pelleted after 5% trichloroacetic acid or 3 : 1 (methanol-acetic acid) precipitation at 4 °C resulted in an aggregate which could not be adequately resuspended for further washing. This problem was circumvented using 50% acetic acid fixation at 4 °C. Using this procedure the pellet of nuclei could be washed, removing much of radioactivity with minimal loss of nuclei, indicating adventitious adsorption of radioactive DNA. This was confirmed by sedimentation of unlabeled nuclei through the reaction mixture containing radioactive chromatin. We conclude that the existing methodologies for studying DNA synthesis in isolated nuclei have been inadequate.  相似文献   

13.
Summary An established in vitro assay for quantitating cell-substratum adhesion has been utilized to measure the adhesiveness of 10 cell lines to a colloidal overlay. The procedure, a derivation of the William’s blister test for adhesives, involves growing cells to confluency on a polystyrene surface and then overlaying the monolayers with a Bacto-agar substratum. The cell-agar substratum systems are debonded and thera,adhesive bond strength, of the separation of the two interfaces calculated. Thera’s were determined for the following cell types: SGL (gingival epithelial-like), L (transformed mouse fibroblasts), HeLa (human carcinoma), MDCK (canine kidney epithelial), WI-38 (human embryonic lung), Flow 1000 (human embryonic skin—muscle), Flow 4000 (human embryonic kidney), Flow 5000 (whole human embryo), BALB/c 3T3 (mouse fibroblasts) and SV40-transformed BALB/c 3T3 (simian virus 40-transformed mouse fibroblasts). Transformed cells (L, HeLa and SV40-transformed BALB/c 3T3) proved to be quantitatively less adhesive (ra/cell) than either fibroblast or epithelial-like cell lines. Of the “normal” cells tested the kidney cells, human embryonic fibroblast and canine epithelial cells, and the gingival epithelial-like cells demonstrated a weaker binding to the colloidal overlay than the mouse fibroblasts (BALB/c 3T3), the human embryonic lung, the human embryonic skin-muscle, and the whole human embryo fibroblast cell lines. Concanavalin A increased the bonding strength of Flow 5000 cells after 24 hr incubation; however, the adhesiveness of the treated BALB/c 3T3 cells remained similar to the unterested samples while thera of the treated SV40-transformed BALB/c 3T3 cells decreased. This research was supported by National Institute of Dental Research Grant DE03983.  相似文献   

14.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

15.
The aim of this study was to test if an extremely weak 1 GHz electromagnetic field (EMF), known to be in resonance with clusters of water molecules, has biological effects on human fibroblasts. We demonstrated that in an in vitro model of wound healing, this EMF can activate fibroblast migration. [3H]thymidine incorporation experiments demonstrated that the EMF could also activate fibroblast proliferation. Activation of the expression of human fibroblast growth factor 1 (HFGF1) after EMF exposure showed that molecular wound healing pathways are activated in response to this water-resonant EMF.  相似文献   

16.
Evidence that exogenous hyaluronate (HA) binds to the surface of muscle fibroblast cultures was obtained by incubating confluent fibroblasts with 14C-HA purified from fibroblast cell surfaces. Surface-bound 14C-HA was operationally defined as material resistant to six saline washes and solubilized by brief trypsinization. All of the surface-bound radioactivity remains as authentic HA. Exposure of fibroblasts to 100 μg/ml cold HA caused a nearly 3-fold ‘reduction’ in incorporation of isotopic precursors into glycosaminoglycan (GAG); but when intracellular 14C precursors to GAG were quantitated, the entire ‘reduction’ could be accounted for by decreased precursor uptake. Exposure to exogenous HA altered the distribution of newly synthesized GAG by stimulating an increase in total GAG secreted to the medium at the expense of that bound to the culture surface. Qualitatively, the cell surface ratio of 14C-HA: 14C-sulfated GAG (SGAG) of HA-treated cells is about 2.5 times greater than that of untreated cells and the medium ratio is correspondingly reversed. This is primarily the result of stimulated 14C-SGAG release to the culture medium. Addition of cold HA to prelabeled cultures also stimulates the selective turnover of SGAG from the culture surface. Thus, exposure to HA alters the fibroblast surface by accumulation of exogenous HA as well as by stimulation of SGAG turnover.  相似文献   

17.
Glucocorticoids act synergistically with insulin-like growth factor I (IGF-I) to stimulate DNA synthesis and replication of cultured human fibroblasts. In the present study, we further define glucocorticoid and IGF-I interactive effects on human fibroblast metabolism and growth. IGF-I stimulated dose-dependent increases in early metabolic events. Half-maximal effectiveness was seen at 5–8 ng/ml IGF-I, with mean maximal responses of 1.5-, 2-, and 6-fold for [3H]2-deoxyglucose uptake, [14C]glucose incorporation, and [14C]aminoisobutyric acid (AIB) uptake, respectively. A 48-hour preincubation with 10?7 M dexamethasone markedly enhanced both the sensitivity and maximal effectiveness of IGF-I stimulation of AIB uptake. In contrast, dexamethasone had no effect on IGF-I-stimulated glucose uptake and utilization. Maximum specific binding of [125I]IGF-I to fibroblast monolayers was identical in ethanol control and glucocorticoid-treated cells, with 50% displacement at ~5 ng/ml IGF-I. In addition to its synergism with IGF-I, preincubation with dexamethasone augmented insulin and epidermal growth factor (EGF) stimulation of [3H]thymidine incorporation; dexamethasone had no effect on platelet-derived growth factor or fibroblast growth factor action. Two-dimensional gel electrophoresis identified two specific glucocorticoid-induced proteins in human fibroblast cell extracts with molecular weights of 45K and 53K and pls of 6.8 and 6.3, respectively. These data indicate that IGF-I receptor-mediated actions in human fibroblasts are differentially modulated by glucocorticoids. Glucocorticoids are synergistic with IGF-I in stimulating mitogenesis and amino acid uptake, without having any apparent effect on IGF-I-stimulated glucose metabolism. Glucocorticoid enhancement of growth factor bioactivity may involve modulation of a regulatory event in the mitogenic signaling pathway subsequent to cell surface receptor activation. © 1995 Wiley-Liss, Inc.  相似文献   

18.
BackgroundSkin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.ObjectiveThe goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.MethodsHigh fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.ResultsHigh fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2–associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed.ConclusionHigh fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit.  相似文献   

19.
鸡胚成纤维细胞cDNA表达文库的构建   总被引:2,自引:0,他引:2  
鸡胚成纤维细胞(CEF)是研究鸡传染性法氏囊病病毒(IBDV)的主要细胞材料,而构建CEF的cDNA表达文库是筛选IBDV在CEF中的细胞受体,研究细胞嗜性的基础平台。采用Gateway技术构建CEF的表达文库,避免使用限制性内切酶切割cDNA,能够解决常规方法构建cDNA文库的技术缺陷。该技术将CEF的mRNA分离纯化后,以5′端生物素标记的Oligo(dT)primer为引物反转录后连接Adapter,层析柱纯化,通过BP重组反应构建cDNA入门文库,其平均滴度为1.1×106cfu/mL,文库总容量为1.2×107cfu,平均插入片段为2243bp,重组率为100%。通过LR重组反应将入门文库转换为表达文库,经测定平均滴度为5×105cfu/mL,文库总容量为5.5×106cfu,平均插入片段为2411bp,重组率为100%。结果表明,所构建的文库具有较高的重组率和较大的库容量,可作为较高质量的文库来研究IBDV的相关基因,为研究病毒受体和病毒入侵途径,进一步了解IBDV的致病机理奠定了基础。  相似文献   

20.
The purpose of this study was to assess insoluble salts containing gadolinium (Gd3+) for effects on human dermal fibroblasts. Responses to insoluble Gd3+ salts were compared to responses seen with Gd3+ solubilized with organic chelators, as in the Gd3+-based contrast agents (GBCAs) used for magnetic resonance imaging. Insoluble particles of either Gd3+ phosphate or Gd3+ carbonate rapidly attached to the fibroblast cell surface and stimulated proliferation. Growth was observed at Gd3+ concentrations between 12.5 and 125 μM, with toxicity at higher concentrations. Such a narrow window did not characterize GBCA stimulation. Proliferation induced by insoluble Gd3+ salts was inhibited in the presence of antagonists of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways (similar to chelated Gd3+) but was not blocked by an antibody to the platelet-derived growth factor receptor (different from chelated Gd3+). Finally, high concentrations of the insoluble Gd3+ salts failed to prevent fibroblast lysis under low-Ca2+ conditions, while similar concentrations of chelated Gd3+ were effective. In conclusion, while insoluble Gd3+ salts are capable of stimulating fibroblast proliferation, one should be cautious in assuming that GBCA dechelation must occur in vivo to produce the profibrotic changes seen in association with GBCA exposure in the subset of renal failure patients that develop nephrogenic systemic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号