首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual ingestion and body growth have been estimated for average-sized adult (mean s.l. 62.7 mm) jewel damselfish. Plectroglyphidodon lacrymatus (Quoy et Gaimard), on a shallow fringing reef of southern Papua New Guinea. Mean ingestion (calculated from daily algal-food consumption in winter, the relationship between water temperature and feeding activity, and C, N and P contents of algal food) was 304.3gC year, 20.4gN year−1 and 3.5gP year−1 for this herbivorous fish. Mean body-growth rates for the fish were 5.7 mm year−1, from SEM analysis of sagittal-otolith microstructure, and 6.2 mm year−1 from a mark-release-recapture study in the wild. Based on C and N analyses of whole fish and the dry-weight/s.L. relationship, the gross growth efficiency of these fish was 0.2% for C and 0.5% for N. These very low efficiencies indicate that although P. lacrymatus ingests and absorbs a high proportion of algal production in its territory, only a small part of the assimilation goes into body growth and is thus potentially available to piscivorous fish higher in the food-chain.  相似文献   

2.
Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N-27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50'-19°45'S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km(2). Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO(3) production was estimated from in situ growth assays at 1.07 kg m(-2) yr(-1), with a total production rate of 0.025 Gt yr(-1), comparable to those of the world's largest biogenic CaCO(3) deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.  相似文献   

3.
Unattached, nongeniculate, coralline algae or rhodoliths exhibit a range of morphological variability seemingly dependent on environmental factors. Rhodoliths have an extensive fossil record, and environmentally dependent characteristics make them potentially reliable paleoindicators. Species of the rhodolith‐forming genus Lithophyllum Philippi in Baja California Sur, Mexico were recently consolidated into one species. Under the new classification, L. margaritae (Hariot) Heydrich consists of several growth forms presumably reflecting local environmental conditions. We examined the genetic structure of four populations of this species using amplified fragment length polymorphisms (AFLP) to characterize the extent of genetic variation associated with foliose and fruticose growth forms. AFLP band sharing analysis revealed that foliose growth forms exhibited consistently higher intrapopulation similarities (0.75–0.85) than fruticose growth forms (similarity range, 0.55–0.67). This trend was also evident in comparisons of geographically isolated populations. These data indicate that the two morphologies are genetically distinct and that genetic exchange between foliose and fruticose growth forms of L. margaritae may be limited. Consequently, rhodolith growth forms appear to be the result of an interplay between both genetic makeup and environmental conditions.  相似文献   

4.
New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM‐EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith‐forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM‐EDS and X‐ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM‐EDS, XRD, Microtomography and X‐ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2, ocean acidification, and global warming.  相似文献   

5.
The population structure, age, growth, mortality and harvest intensity of the oyster Crassostrea madrasensis were examined in the Moheskhali Channel, Bangladesh between June 2003 and May 2004. The channel is a representative habitat for the area. C. madrasensis monthly length frequency data were analyzed using FiSAT software for estimating population parameters, including asymptotic length ( L ), growth co-efficient ( K ) and recruitment pattern to assess the status of the stock. Asymptotic length ( L∝ ) and growth co-efficient ( K ) were 20.88 cm and 0.35 year−1, respectively. The growth performance index (φ') was calculated with 2.18. The growth pattern showed negative allometric growth ( b  < 3), with an asymptotic weight ( W ) of about 1124.6 g. The oyster attained an average length of 6.17 cm at the end of 1 year. Total mortality ( Z ) by length-converted catch curve was estimated at 1.78 year−1, fishing mortality ( F ) at 0.77 year−1, and natural mortality ( M ) at 1.01 year−1. The exploitation level ( E ) of C. madrasensis was 0.43, while the maximum allowable limit of exploitation ( E max) was 0.45 for the highest yield. The recruitment pattern was continuous, displaying a single major peak event per year. Habitat temperatures were 25.5–31.0°C (mean ± SD, 29 ± 1.62°C); salinity range was from 12.36 to 26.0 ppt (mean ± SD, 19.6 ± 4.7 ppt). The exploitation level (0.43) indicated that the oyster stock was exploited at almost maximum yield in this channel.  相似文献   

6.
RHODOLITHS: BETWEEN ROCKS AND SOFT PLACES   总被引:1,自引:0,他引:1  
Rhodoliths (maërl) are widely distributed in the worlds' oceans and have an excellent fossil record. Individuals are slow growing, may be long lived (>100 years), and are resilient to a variety of environmental disturbances. Their external morphology and internal growth bands are potential archives of environmental variation at scales of within years to tens of years. At high densities, these free-living non-geniculate coralline algae form rhodolith beds, communities of high diversity that can be severely impacted by resource extraction.  相似文献   

7.
Growth rates of cultured first-year bonefish Albula sp. averaged 0·32 mm day−1. Maximum theoretical growth (±95% CI) was 278 (±11·2) mm L S (sexes combined), confirming that Albula sp. from the Gulf of California grow less than other species in the' vulpes 'complex.  相似文献   

8.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

9.
Lemon sharks Negaprion brevirostris were sampled in the Atol das Rocas, a nursery area, on nine occasions from March 1999 to October 2003, during which 157 individuals were tagged and 35 were recaptured. The male : female sex ratio of captured individuals was 1 : 1·12. Mean ±  s . d . growth rates were 24·7 ± 3·4 cm year−1 in total length ( L T), 20·7 ± 3·2 cm year−1 in fork length, and 19·5 ± 2·7 cm year−1 in precaudal length. There was no significant difference in growth rates between males and females. Mean ±  s . d . increase in mass was 2565 ± 762 g year−1. The von Bertalanffy growth parameters estimated by the Fabens method based on L T were: k  = 0·077, L  = 399·9 cm and t 0 = −2·16. Despite the large variation of environmental conditions, particularly of tidal range and currents, and the lack of protective mangrove cover in the nursery area at Atol das Rocas, juvenile lemon sharks grew relatively faster than at other nurseries. Such rapid growth could be a response to abundant food availability or high risk of predation by adults that enter the nursery area.  相似文献   

10.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

11.
Abstract. Settlement timing and differential settlement for the larval stage of the green sea urchin, Strongylocentrotus droebachiensis , in the southern Gulf of Maine was studied during the summer of 1996. Settlement densities on astroturf panels were highest in June and early July (13 to 37 m −2 d−1), and peaked in mid-June (199 m−2 d−1). Settlement was low to nonexistent from mid-July through August (0 to 2 m−2 d−1). During the peak in settlement, no selection for substrate type was observed. In the remainder of the settlement period, differential settlement occurred, with a preference for substrate covered with live coralline algae. Test diameter of newly settled urchins varied among the substrates, with urchins settling on live coralline algae having the largest test diameter (0.43 ± 0.01 mm). There were no differences in test diameter among the different weeks in which sampling was done. Sustained onshore winds occurred only during peak settlement, suggesting that wind drift currents may concentrate larvae and influence patterns of larval settlement.  相似文献   

12.
Dr. André Freiwald 《Facies》1993,29(1):133-148
Summary In the subtropical belt highly productive ecosystems are formed by coral reefs in oligotrophic seas. Towards more eutrophic conditions, coral reefs diminish and are subsequently replaced by highly productive kelp forests. In high latitudes framework constructing carbonate production is enhanced by the growth of branching coralline algae which predominantly generate maerl-type deposits. On a global view, these coralline algal ecosystems show an island-like distribution pattern within the phaeophytic kelp belt. Compared to kelp ecosystems, coralline-algaldominated ecosystems have low rates of productivity. Therefore, it is reasonable to seek the pronounced competitive value of the extremely slow-growing corallines. Due to their low annual growth increment, the coralline algae studied are very endangered by abiotic physical disturbances and by overgrowth of rapidly growing filamentous algae or sessile invertebrates. To overcome fouling pressure and storm-triggered physical disturbances, coralline algae thrive well in wave-sheltered headlands or skerry areas and generate characteristic ‘denuded areas’ by intense herbivory. This general distributional pattern is also true for high-boreal to subarctic coralline algal bioherms in northern Norway. Such a complex biological feedback maintains a high potential of self-regulation or self-organization in the algal reef bioherms. The different proponents involved in feedback processes include bacterial colonization, diatom microfouling and selective induction of larval metamorphosis. The negative impact of diatom microfouling and the important role of herbivores are relevant activities in the feedback system on a microscopic scale. Macroscopically, intense herbivory on coralline algae create denuded conditions, which are a widespread phenomenon in coralline algal ecosystems.  相似文献   

13.
Within the Gavrovo–Tripolitza area (southern continental Greece), marine carbonate platforms existed from the Late Triassic to the Late Eocene. The Middle–Upper Eocene marine shallow-water carbonates of the Klokova Mountain represent remnants of the large volumes of sediment that were produced on a middle ramp sedimentary system which culminated in the Lower Oligocene terrigenous deposits. Facies analysis of Bartonian–Priabonian shallow-water carbonate successions and the integration with palaeoecological analysis are used to produce a detailed palaeoenvironmental model. In the proximal middle ramp, porcelaneous foraminiferal packstone facies is characterised by larger foraminifera such as Praturlonella and Spirolina. These forms thrived in a shallow-water setting with low turbidity, high-light intensity and low-substrate stability. The foraminiferal packstone facies, the thin coralline wacke–packstone facies and the rhodolith packstone facies deposited approximately in the same depth range adjacent to one another in the middle-ramp. Nummulitids (Nummulites, Assilina, Pellatispira, Heterostegina and Spiroclypeus) increase in abundance in the middle to distal mid-ramp together with the orthophragminids. Coralline algae, represented by six genera, are present in all facies. Rhodoliths occur in all facies but they show different shapes and growth forms. They develop laminar sub-ellipsoidal shapes in higher turbulence conditions on mobile sand substrates (foraminiferal packstones and rhodolith rudstones), whilst sub-discoidal shapes often bound by thin encrusting coralline plants in lower hydrodynamic settings. The distinctive characteristics of the palaeoecological middle-ramp gradient are an increase in dominance of melobesioids, a thinning of the encrusting coralline plants and a flattening of the larger benthic foraminiferal shells.  相似文献   

14.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

15.
Both responses to short-term changes of temperature and to chilling under high light were analyzed in populations of Echinochloa crus-galli var. crus-galli (L.) Beauv. from Québec. North Carolina and Mississippi to improve the understanding of C4 photosynthesis at low temperature. Comparison also included plants of Eleusine indica (L.) Gaertn. from Mississippi to provide for differences among species and populations. Plants were grown at two thermoperiods (28/22°C, 21/15°C). After transfer from cool (21/15°C) to warm (28/22°C) growth conditions, Echinochloa from Mississippi achieved the highest photosynthetic rates. Plants from Québec maintained the highest rates of CO2 uptake upon transfer to cool conditions. Exposure to 7°C for 3 days at a photon fluence rate of 1000 μmol m−2s−1 resulted in a reduction in the growth rates of all populations. This reduction was paralleled by a decrease in net photosynthesis and in stomatal conductance. Following chilling under hight light, the reduction in growth parameters was less important for plants from Québec than for the other populations. It suggests that, among other characteristics, northern plants had developed a certain tolerance to chilling under light.  相似文献   

16.
Both global and local environmental changes threaten coral reef ecosystems. To evaluate the effects of high seawater temperature and phosphate enrichment on reef‐building crustose coralline algae, fragments of Porolithon onkodes were cultured for 1 month under laboratory conditions. The calcification rate of the coralline algae was not affected at 30°C, but it decreased to the negatives at 32°C in comparison to the control treatment of 27°C, indicating that the temperature threshold for maintaining positive production of calcium carbonate lies between 30 and 32°C. Phosphate enrichment of 1–2 μmol L ?1 did not affect the calcification rate. The net oxygen production rate was enhanced by phosphate enrichment, suggesting that the photosynthetic rate was limited by the availability of phosphate. It was concluded that moderate phosphate enrichment does not directly deteriorate algal calcification but instead ameliorates the negative effects of high seawater temperature on algal photosynthesis.  相似文献   

17.
The growth rates of juvenile smalltooth sawfish Pristis pectinata collected in Florida waters between 1999 and 2006 were investigated using length-frequency and tag-recapture data. Stretched total length ( L ST) data from 144 smalltooth sawfish (690–4960 mm) and 28 recaptures (775–2150 mm) were used for the analyses. Both methods indicated that growth was rapid during the first 2 years after birth. The L ST increased by 650–850 mm in the first year, and by 480–680 mm in the second year. Data for animals >2200 mm were limited, so growth beyond 2 years of age was uncertain. The von Bertalanffy growth parameters estimated from L ST frequency data were L = 6000 mm, K = 0·140 year−1 and t 0=−0·863 years. Growth rates over the size range for which tag-recapture data were available were similar to that from L ST frequency data. The growth rates reported are substantially faster than those previously assumed for this species and may have important implications for the recovery of this endangered species. There are conflicting data regarding the growth rates of older P. pectinata which need to be resolved with more data from the wild population before a complete understanding of the conservation implications can be obtained.  相似文献   

18.
Population structure, growth, length–weight relationship, mortality and stock size of tench, Tinca tinca (L.), was studied in Lake Beyşehir, Turkey in 2005. Totals of 3360 tench (1865 males; 1795 females) were captured with gill- and trammel-nets of various mesh sizes. Male to female ratio was 1.04 : 1. The study covered length year classes. Fork lengths and total weights ranged from 9 to 37 cm and 13 to 815 g. For all individuals, the von Bertalanffy growth equation and length–weight relationship were L t = 54.2[1−exp(−0.1350( t  + 1.0281)] and W  = 0.0151  L 2.9993, respectively. Growth performance index and mean condition factor of the tench population were 2.598 and 1.513, respectively. Mortality rates were Z  = 1.97 year−1, M  = 0.29 year−1 and F  = 1.68 year−1 for total, natural, and fishing mortality, respectively. The exploitation rate was E  = 0.85, and the percentage of surviving fish was 13.9%. Tench stock was assessed as about 6–7 million individuals and 1450–1500 tonnes in biomass. It was determined that maximum sustainable yield could be obtained with an 80% level of the current fishing effort.  相似文献   

19.
The community structure of rhodoliths beds in the central Brazilian continental shelf was studied under the hypothesis that nongeniculate coralline algae are the major contributors of the individual rhodoliths. Samples were collected from five localities within a single area at 17–18 m depth. At each locality, rhodoliths were collected in 10 random quadrat samples along a 20-m transect. Our results show that dead cores of rhodoliths were significantly composed by nongeniculate coralline red algae rather than bryozoans, corals, or inorganic material. The live outer layers of the rhodoliths are composed mainly of 7 species of nongeniculate red coralline algae (Lithophyllum coralline, L. johansenii, L. depressum, L. stictaeformis, Neogoniolithon brassica-florida, Spongites fruticosus, and Lithothamnion muellerii) associated with other encrusting organisms such as bryozoans, sponges, corals, barnacles, and Peyssonnelia red algae. Significant differences were found in the proportion of Lithophyllum species in relation to other red coralline algae found in this study. Our results show that on the Brazilian continental shelf, the rhodolith-forming species are quite higher in size than in any other studied areas in the world. There was no difference in the proportion of live-to-dead rhodolith materials, suggesting an old bed deposit. Also, the amount of calcium carbonate material in the specimens is relevant to take in account in terms of the CO2 balance worldwide.  相似文献   

20.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号