首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filamentous phages are now the most widely used vehicles for phage display and provide efficient means for epitope identification. However, the peptides they display are not very immunogenic because they normally fail to present foreign epitopes at the very high densities required for efficient B-cell activation. Meanwhile, systems based on virus-like particles (VLPs) permit the engineered high-density display of specific epitopes but are incapable of peptide library display and affinity selection. We developed a new peptide display platform based on VLPs of the RNA bacteriophage MS2. It combines the high immunogenicity of MS2 VLPs with the affinity selection capabilities of other phage display systems. Here, we describe plasmid vectors that facilitate the construction of high-complexity random sequence peptide libraries on MS2 VLPs and that allow control of the stringency of affinity selection through the manipulation of display valency. We used the system to identify epitopes for several previously characterized monoclonal antibody targets and showed that the VLPs thus obtained elicit antibodies in mice whose activities mimic those of the selecting antibodies.  相似文献   

2.
The high level of immunogenicity of peptides displayed in dense repetitive arrays on virus-like particles makes recombinant VLPs promising vaccine carriers. Here, we describe a platform for vaccine development based on the VLPs of RNA bacteriophage MS2. It serves for the engineered display of specific peptide sequences, but will also allow the construction of random peptide libraries from which specific binding activities can be recovered by affinity selection. Peptides representing the V3 loop of HIV gp120 and the ECL2 loop of the HIV coreceptor, CCR5, were inserted into a surface loop of MS2 coat protein. Both insertions disrupted coat VLP assembly, apparently by interfering with protein folding, but these defects were suppressed efficiently by genetically fusing coat protein's two identical polypeptides into a single-chain dimer. The resulting VLPs displayed the V3 and ECL2 peptides on their surfaces where they showed the potent immunogenicity that is the hallmark of VLP-displayed antigens. Experiments with random-sequence peptide libraries show the single-chain dimer to be highly tolerant of six, eight and ten amino acid insertions. MS2 VLPs support the display of a wide diversity of peptides in a highly immunogenic format, and they encapsidate the mRNAs that direct their synthesis, thus establishing the genotype/phenotype linkage necessary for recovery of affinity-selected sequences. The single-chain MS2 VLP therefore unites in a single structural platform the selective power of phage display with the high immunogenicity of VLPs.  相似文献   

3.
Pan Y  Zhang Y  Jia T  Zhang K  Li J  Wang L 《The FEBS journal》2012,279(7):1198-1208
Recently, microRNA (miRNA)-mediated RNA interference has been developed as a useful tool in gene function analysis and gene therapy. A major obstacle in miRNA-mediated RNAi is cellular delivery, which requires an efficient and flexible delivery system. The self-assembly of the MS2 bacteriophage capsids has been used to develop virus-like particles (VLPs) for RNA and drug delivery. However, MS2 VLP-mediated miRNA delivery has not yet been reported. We therefore used an Escherichia coli expression system to produce the pre-miR 146a contained MS2 VLPs, and then conjugated these particles with HIV-1 Tat(47-57) peptide. The conjugated MS2 VLPs effectively transferred the packaged pre-miR146a RNA into various cells and tissues, with 0.92-14.76-fold higher expression of miR-146a in vitro and about two-fold higher expression in vivo, and subsequently suppressed its targeting gene. These findings suggest that MS2 VLPs can be used as a novel vehicle in miRNA delivery systems, and may have applications in gene therapy.  相似文献   

4.
mRNA vaccines are potentially attractive alternatives to DNA vaccines more often discussed, as they are generally considered safer than their DNA counterparts. The major limitations on the potency of RNA vaccines are their instability and inability to spread in vivo. Virus-like particles (VLPs) based on the bacteriophage MS2 have demonstrated remarkably high stability and may provide an improved platform for RNA-based genetic vaccination. However, no in vivo study of an MS2 VLP-mediated RNA vaccine has been reported. Therefore, we developed a model vaccine wherein MS2 VLPs packaging HIV-1 gag mRNAs (1544 bases) were produced in Saccharomyces cerevisiae, and then, used to immunize BALB/c mice. Serological analyses showed that antigen-specific antibody responses were elicited by immunization. These findings suggest that MS2 VLPs can be used in the design and construction of novel and safe phage-based mRNA delivery vectors.  相似文献   

5.
《Journal of Asia》2019,22(4):1167-1172
Porcine parvovirus (PPV) is a significant causative agent of porcine reproductive failure, causing serious economic losses in the swine industry. PPV is a nonenveloped virus, and its capsid is assembled from three viral proteins (VP1, VP2, and VP3). The major capsid protein, VP2, is the main target for PPV neutralizing antibodies and vaccine development. In this study, PPV-VP2 protein was expressed in silkworm larvae, and its antigenicity and production were compared with those in B. mori cells (Bm5). The recombinant VP2 protein was expressed successfully in silkworm larvae and Bm5 cells with a size of approximately 64 kDa. The formation of virus-like particles (VLPs) by recombinant PPV-VP2 was confirmed through transmission electron microscopy. The recombinant PPV-VP2 protein assembled into spherical particles with diameters ranging from 20 to 22 nm. The antigenicity of PPV-VLPs was comparatively analyzed between Bm5 cells and silkworm larvae by ELISA, hemagglutination and hemagglutination inhibition assays. Consequently, it was confirmed that the PPV-VLPs produced in the silkworm larvae were more antigenic than VLPs produced in Bm5 cells. Therefore, it is expected that economical and effective vaccine development will be possible by mass production of PPV-VLPs in silkworm larvae.  相似文献   

6.
7.
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans.  相似文献   

8.
BST-2是最近发现的可以抑制成熟HIV-1(human immunodeficiency virus,HIV)病毒颗粒从哺乳动物细胞表面释放的宿主因子,随之发现其也可以抑制多种包膜病毒的释放。本研究采用密码子优化的表达HIV-1 gag和gag-pol蛋白的质粒所形成的病毒样颗粒作为研究对象,观测BST-2对这两种病毒样颗粒(Virus-like particle,VLP)的释放抑制情况及其作用机制。结果发现,瞬时表达和稳定表达的BST-2均可以显著抑制病毒样颗粒从哺乳动物细胞释放,同时发现这两种病毒样颗粒(gag/gag-pol)的释放都可以被BST-2抑制;而且,HIV-1中Vpu蛋白可以拮抗BST-2抑制HIV病毒样颗粒释放的作用,另外,通过化学试剂和酶学方法处理,确证BST-2可以被包装进病毒样颗粒中。  相似文献   

9.
The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.  相似文献   

10.
11.
MicroRNAs are related to the development of hepatocellular carcinoma and can serve as potential therapeutic targets. Therapeutic strategies increasing tumor-suppressive microRNAs and reducing oncogenic microRNAs have been developed. Herein, the effects of simultaneously altering two microRNAs using MS2 virus-like particles were studied. The sequences of microRNA-21-sponge and pre-microRNA-122 were connected and cloned into a virus-like particle expression vector. Virus-like particles containing microRNA-21-sponge and pre-microRNA-122 sequences were prepared and crosslinked with a cell-specific peptide targeting hepatocellular carcinoma cells. Delivery effects were studied using RT-qPCR and functional assays to investigate the level of target mRNAs, cell toxicity, and the effects of proliferation, invasion, and migration. Virus-like particles delivered miR-21-sponge into cells, with the Ct value reaching 10 at most. The linked pre-miR-122 was processed into mature miR-122. The mRNA targets of miR-21 were derepressed as predicted and upregulated 1.2–2.8-fold, and the expression of proteins was elevated correspondingly. Proliferation, migration, and invasion of HCC cells were inhibited by miR-21-sponge. Simultaneous delivery of miR-21-sponge and miR-122 further decreased proliferation, migration, and invasion by up to 34%, 63%, and 65%, respectively. And the combination promoted the apoptosis of HCC cells. In conclusion, delivering miR-21-sponge and miR-122 using virus-like particles modified by cell-specific peptides is an effective and convenient strategy to correct microRNA dysregulation in hepatocellular carcinoma cells and is a promising therapeutic strategy for hepatocellular carcinoma.  相似文献   

12.
Viral capsids of simian virus 40 (SV40) are highly efficient gene delivery vehicles that infect a broad range of cells and tissues. To develop a controlled, cell type-specific delivery system, we sought to display foreign peptides on the capsid surface by genetically manipulating the major capsid protein Vp1. Here we report the identification of two sites within the surface loops of Vp1 that can accommodate foreign peptides in such a way that the foreign peptides are displayed on the surface of the virus-like particles (VLPs) without interfering with VLP assembly or the packaging of viral DNA. Insertion of Flag-tags but not RGD integrin-binding motifs at these sites strongly inhibited cell attachment of VLPs, which normally associate with host cells through cell surface molecules such as major histocompatibility complex (MHC) class I and ganglioside GM1. Instead, VLPs carrying the RGD motifs bound to integrin in vitro and to the cell surface in an RGD-dependent manner. Thus, insertion of foreign sequences into the surface loops of Vp1 can reduce natural virus-cell interactions and even confer an ability to bind to a new target receptor. This study demonstrates the potential usefulness of this strategy for the development of novel delivery vehicles with different cell tropisms.  相似文献   

13.
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.  相似文献   

14.
We compare for the first time the electrokinetic and aggregation properties of MS2 phage (pH 2.5 to 7, 1 to 100 mM NaNO(3) electrolyte concentration) with those of the corresponding virus-like particles (VLPs), which lack entirely the inner viral RNA component. In line with our previous work (J. Langlet, F. Gaboriaud, C. Gantzer, and J. F. L. Duval, Biophys. J. 94:3293-3312, 2008), it is found that modifying the content of RNA within the virus leads to very distinct electrohydrodynamic and aggregation profiles for MS2 and MS2 VLPs. Under the given pH and concentration conditions, MS2 VLPs exhibit electrophoretic mobility larger in magnitude than that of MS2, and both have similar isoelectric point (IEP) values (~4). The electrokinetic results reflect a greater permeability of MS2 VLPs to electroosmotic flow, developed within/around these soft particles during their migration under the action of the applied electrical field. Results also support the presence of some remaining negatively charged component within the VLPs. In addition, MS2 phage systematically forms aggregates at pH values below the IEP, regardless of the magnitude of the solution ionic strength, whereas MS2 VLPs aggregate under the strict condition where the pH is relatively equal to the IEP at sufficiently low salt concentrations (<10 mM). It is argued that the stability of VLPs against aggregation and the differences between electrokinetics of MS2 and corresponding VLPs conform to recently developed formalisms for the stability and electrohydrodynamics of soft multilayered particles. The differences between the surface properties of these two kinds of particles reported here suggest that VLPs may not be appropriate for predicting the behavior of pathogenic viruses in aqueous media.  相似文献   

15.
Histopathology of virus-like particles in Heliothis spp   总被引:1,自引:0,他引:1  
Larvae of Heliothis spp. collected from cotton, soybean, and peanut fields in South Carolina were found to be infected with virus-like particles (VLPs). Infected larvae became pale and swollen, stopped feeding, and remained alive for 2–3 weeks. Hemolymph from these larvae was milky and contained numerous spherical bodies ranging in diameter from 2 to 10 μm. The hemolymph also contained VLPs which were oval and measured 375 × 125 nm. Infectivity tests with crude saline extracts of infected larvae demonstrated that the pathogen could be transmitted by injection but not per os. The spherical bodies contained VLPs (387 × 149 nm) surrounded by two envelopes and packed together in clusters. These VLPs were also found in fat body cells, cuticular epithelial cells, tracheal cells, and connective tissue associated with the body wall and the gut. They were not found in muscle tissue or in midgut epithelial cells. Similar VLPs have been found in Heliothis zea from Mississippi and Trichoplusia ni from California, but a positive identification of the VLPs has not been made in any of these studies. Morphologically they appear to be distinct from any other previously described insect viruses.  相似文献   

16.
Virus structures continue to be the basis for mechanistic virology and serve as a paradigm for solutions to problems concerning macromolecular assembly and function in general. The use of X-ray crystallography, electron cryomicroscopy and computational and biochemical methods has provided not only details of the structural folds of individual viral components, but also insights into the structural basis of assembly, nucleic acid packaging, particle dynamics and interactions with cellular molecules.  相似文献   

17.
Plasmid-driven formation of influenza virus-like particles   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

18.
Vaccine potential of Nipah virus-like particles   总被引:1,自引:0,他引:1  
Nipah virus (NiV) was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs) composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease.  相似文献   

19.
Virus-like particles (VLPs) consist of a virus's outer shell but without the genome. Similar to the virus, VLPs are monodisperse nano-capsules which have a known morphology, maintain a high degree of symmetry, and can be engineered to encapsidate the desired cargo. VLPs are of great interest for vaccination, drug/gene delivery, imaging, sensing, and material science applications. Here we demonstrate the ability to control the disulfide bond formation in VLPs by directly controlling the redox potential during or after production and assembly of VLPs. The open cell-free protein synthesis environment, which has been reported to produce VLPs at yields comparable or greater than traditional in vivo technologies, was employed. Optimal conditions for disulfide bond formation were found to be VLP dependent, and a cooperative effect in the formation of such bonds was observed.  相似文献   

20.
A system capable of incorporating amino acids into protein has been prepared from chloroplasts isolated from spinach leaves. The activity of the system is inhibited by chloramphenicol or RNase but not by rifampycin or cycloheximide. After reducing the endogenous activity by treatment with micrococcal nuclease, the system responds to homologous or heterologous mRNAs. The RNA from MS-2 phage is translated faithfully as demonstrated by the isolation from the translation products of a protein with the same mobility of the phage coat protein. Partial proteolytic digestion confirmed that the protein synthesized in vitro is indeed the phage protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号