首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of both the lipid composition of microalgal diets and commercial flours on the lipid classes and fatty acids of Ruditapes decussatus spat was studied. These aspects of the nutritional value of the diets were discussed in relation to the growth of the spat. Four diets were tested; Diet A, composed of 100% of the daily food ration of microalgae; Diet B, composed of 100% of wheatgerm; Diet C, composed of 50% of microalgae and 50% of wheatgerm; and Diet D, composed of 25% of microalgae and 75% of wheatgerm. The microalgal cells present a higher lipid content than that for wheatgerm. Tahitian Isochrysis cells have phospholipids and triacylglycerols as majority lipids, whereas in the wheatgerm particles, the lipids more abundant are triacylglycerols. Fatty acid content was higher in the microalgal cells than in the wheatgerm particles. The n-3 fatty acids were the most abundant acids in the microalgae, whereas the n-6 fatty acids were in the wheatgerm. The n-3 PUFA were not detected in wheatgerm. Phospholipids were the main lipids present in the clam spat, followed by triacylglycerols. Other lipid classes, detected in significantly lower amounts, included free fatty acids, sterols, and sterol ester + waxes. The composition of fatty acids in the spat was influenced by the fatty acid composition of the diet. Highest spat growth rates were observed with those diets that present a higher phospholipid/triacylglycerol relation. A negative correlation in the relation n-6/n-3 vs. growth has also been observed, with better growth rates in diets with a lower ratio. If the fatty acid 20:5n-3 and 22:6n-3 considered "essential" for marine animals were not present in the diet, they were not present in the spat either. Desaturation and elongation capabilities of R. decussatus spat were also discussed.  相似文献   

2.
The preen gland secretions from eight species of the genera Acrocephalus and Sylvia (Sylviidae, Passeriformes) mainly consist of monoester waxes. The fatty acids and alcohols are methyl-substituted at even numbered positions only. One of the methyl groups of the fatty acids is always located in the 2-position. Two patterns of methyl substitution are found for the alkanols: 2-mono-, 2,6-di-, and 2,6,x-trimethyl on the one hand, and 4-mono-, 4,8-di-, and 4,8,y-trimethyl on the other. There is, however, no doubt in the uniformity of the family Sylviidae from the chemotaxonomical point of view; the waxes of the species investigated can be arranged in a gradual succession of substitution patterns. The monoester waxes of Sylviidae are similar to those found for the closely related family Turdidae.  相似文献   

3.
The uropygial gland wax from rails contains ester waxes, triester waxes and triglycerides. The ester waxes are composed of mainly methyl-substituted fatty acids with predominantly n-alkanols. Methyl-branched alcohols are only found in minor amounts. The occurrence of 2,6,10- and 4,8,12-trimethyl-substituted acids can be used as chemotaxonomie markers. The triester waxes contain n-fatty acids, n-alkanols and alkyl-hydroxymalonic acids.  相似文献   

4.
Cardiolipins from liver, heart and kidney mitochondria of rats fed a fat-free diet for 66 days have been analyzed for their fatty acid composition and positional distribution. The main effect was a dramatic decrease of linoleic acid which was counterbalanced by increases in the levels of palmitoleic, oleic and cis-vaccenic acids. Linoleic acid remains asymmetrically distributed between positions 1(1") and 2(2") with a positive selectivity for positions 1(1"). Its decrease is considerably faster in positions 2(2") than in positions 1(1"), which would suggest different rates of fatty acid turnover. Fat deficiency induces the appearance of 18:2(n-7) and a significant increase of 20:3(n-6) (dihomo-gamma-linolenic acid) in liver and kidney cardiolipins. In contrast, 20:3(n-6) level remains unchanged in other mitochondrial phospholipids. 18:2(n-7) and 20:3(n-6) are almost evenly distributed between both pairs of positions. Both acids have a common structural feature, that is double bonds in positions 8 and 11. 20:3(n-9) accumulates in large amounts in other mitochondrial phospholipids, but not in cardiolipins. Although surprising, 20:3(n-6) has thus to be considered as a specific marker of deficiency for cardiolipins when it is esterified to positions 1(1"). Taking into account various analytical data, it would appear that positions 1(1") of cardiolipins can only incorporate unsaturated fatty acids containing at least one cis double bond in position 8 or 9, with no other double bond between these positions and the carboxylic group.  相似文献   

5.
Changes in lipid components, particularly glycerophospholipids in the adductor muscle of giant ezo scallop during storage at −20°C, were investigated. During storage, the contents of total lipid (TL) and polar lipid (PL) decreased but that of non-polar lipid (NL) increased. Glycerophosphorylcholine (GPC) and glycerophosphorylethanolamine (GPE) decreased by 50 and 15% of the each initial content, while lyso-GPC and free fatty acids increased. The percentages of polyunsaturated fatty acids such as 20:5n-3 and 22:6n-3 in the TL and PL fractions decreased during storage, but those of the polyunsaturated fatty acids in the NL increased. In the alkenylacyl-GPE and diacyl-GPC, the percentages of relatively longer acids in the sn-1 positions of glycerol moieties decreased at higher rates than did the shorter chains, whereas the results for diacyl-GPE were opposite to those of alkenylacyl-GPE and diacyl-GPC. In the prominent fatty acids in the sn-2 positions of alkenylacyl-GPE and diacyl-GPC, the percentage of 22:6n-3 decreased from compared to the high level of 20:5n-3, while that of diacyl-GPE increased.  相似文献   

6.
Abstract manganese lipoxygenase (Mn-LO) oxygenates 18:3n-3 and 18:2n-6 to bis-allylic 11S-hydroperoxy fatty acids, which are converted to 13R-hydroperoxy fatty acids. Other unsaturated C(16)-C(22) fatty acids, except 17:3n-3, are poor substrates, possibly because of ineffective enzyme activation (Mn(II)-->Mn(III)) by the produced hydroperoxides. Our aim was to determine whether unsaturated C(16)-C(22) fatty acids were oxidized by Mn(III)-LO. Mn(III)-LO oxidized C(16), C(19), C(20), and C(22) n-3 and n-6 fatty acids. The carbon chain length influenced the position of hydrogen abstraction (n-8, n-5) and oxygen insertion at the terminal or the penultimate 1Z,4Z-pentadienes. Dilinoleoyl-glycerophosphatidylcholine was oxidized by Mn-LO, in agreement with a "tail-first" model. 16:3n-3 was oxidized at the bis-allylic n-5 carbon and at positions n-3, n-7, and n-6. Long fatty acids, 19:3n-3, 20:3n-3, 20:4n-6, 22:5n-3, and 22:5n-6, were oxidized mainly at the n-6 and the bis-allylic n-8 positions (in ratios of approximately 3:2). The bis-allylic hydroperoxides accumulated with one exception, 13-hydroperoxyeicosatetraenoic acid (13-HPETE). Mn(III)-LO oxidized 20:4n-6 to 15R-HPETE ( approximately 60%) and 13-HPETE ( approximately 37%) and converted 13-HPETE to 15R-HPETE. Mn(III)-LO G316A oxygenated mainly 16:3n-3 at positions n-7 and n-6, 19:3n-3 at n-10, n-8, and n-6, and 20:3n-3 at n-10 and n-8. We conclude that Mn-LO likely binds fatty acids tail-first and oxygenates many C(16), C(18), C(20), and C(22) fatty acids to significant amounts of bis-allylic hydroperoxides.  相似文献   

7.
Long-chain 1,2-alkanediol diesters were isolated from the total surface lipids of golden Syrian hamsters and Swiss albino mice. Hydrolysis of the diol diester waxes with exocellular lipase from Rhizopus arrhizus delemar or with purified porcine pancreatic lipase produced free fatty acids and 2-acyl diols in about 60--80% yield. Nonrandom distribution of the constituent fatty acids at positions 1 and 2 of the alkanediols was observed. In the diester waxes from the hamster, both straight-chain and branched-chain fatty acids of 14 to 20 carbon atoms predominated at position 1 and those of 22 to 26 carbon atoms at position 2. In contrast, the diester waxes of the mouse contained mainly fatty acids of less than 19 carbon atoms, both saturated and monounsaturated, at position 2 and those of greater chain length (20 to 24 carbon atoms) at position 1. The results of the lipase hydrolysis were confirmed by degradation of the diester waxes with Grignard reagent.  相似文献   

8.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

9.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

10.
The purpose of this work was to see whether hyperlipaemia observed in genetically obese Zucker rats (fa/fa) was associated with differences in fatty-acid composition of plasma triacylglycerols, plasma phospholipids and of platelet phospholipids, in comparison with the control lean rats (Fa/-). Results showed that plasma triacylglycerols and phospholipids were increased in obese rats. In triacylglycerols, the amount of saturated and monounsaturated fatty acids was highly increased whereas the amount of the n-6 and n-3 polyunsaturated fatty acids was little modified. In plasma phospholipids, saturated and monounsaturated fatty acids were also increased, as were the n-3 fatty acids (except C 18:3 n-3); the n-6 fatty acids were little increased except C 20:3 n-6 which was markedly increased. These results concerning the amounts of fatty acids have their counterpart in their relative proportions of fatty acids. Data thus obtained suggest that conversion of linoleic acid (C 18:2 n-6) into arachidonic acid (C 20:4 n-6) was decreased in obese rats, particularly the delta 5 desaturation step. On the contrary, conversion of linolenic acid (C 18:3 n-3) into higher polyenes seemed increased. Thrombocytosis was not modified in the obese rat, but the volume of the platelets was increased. Platelet phospholipids exhibited the same modifications as plasma phospholipids but with different magnitude. Saturated and monounsaturated fatty acids were little augmented, n-3 fatty acids were more augmented (except C 18:3 n-3 acid which was unchanged); n-6 fatty acids were not modified except C 20:3 n-6 acid which was highly increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

12.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

13.
Epicuticular wax of Eragrostis curvula contains hydrocarbons (6%), esters (13%), acids (3%), alkanols (4%), tritriacontane-12,14-dione (47%), 5(S)-5-hydroxytritriacontane-12,14-dione (14%) as major components. The esters consist of triterpenol esters (42%) as well as alkanol esters. The free alkanols consist principally Of C16C32 components, resembling those of waxes from panicoid, and some other eragrostoid, grasses. Minor components are triterpenols (0.7%), triterpenones (0.5%), triacylglycerols (0.3%), secondary alkanols (0.1%) and 5-oxotritriacontane-12,14-dione (0.1%).  相似文献   

14.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

15.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

16.
N-6 fatty acid metabolism was compared in NIH-3T3 cells and DT cells, which differ only in the presence of the v-Ki-ras oncogene. Non-dividing cells were incubated with [1-14C]-labelled fatty acids (18:2n-6, 18:3n-6, 20:3n-6 and 20:4n-6) at different time intervals (2–24 h) and concentration (0–120 M). In both cells lines, the uptake of different fatty acids from the medium was similar and reached a maximum at 6–8 h. All fatty acids reached the same maximum level in DT cells, whereas, the relative uptake of added fatty acids by NIH-3T3 cells was different: 20:4n-6>20:2n-6>18:2n-6=18:3n-6. Throughout the incubation (2–24 h), desaturation and elongation of n-6 fatty acids was more active in DT cells than in NIH-3T3 cells. However, in both cell lines, incubated with different n-6 fatty acid precursors, the levels of radiolabelled 20:4n-6 were relatively constant. In DT cells, phosphatidylcholine was found to be the major fraction labelled with n-6 fatty acids precursors and those of endogenous synthesis, whereas, in NIH-3T3 cells the neutral lipid fraction, particularly triglycerides, was also strongly labelled. In concentration dependent studies, phospholipid labelling by fatty acids was saturable. At lower concentrations, especially in DT cells, phospholipids were labelled predominantly. As the concentration increased there was an overflow into the triglyceride fraction. Since the differences in fatty acid metabolism between the two cell lines cannot be related to the growth rate, it is suggested that they were a consequence of the expression of the v-Ki-ras oncogene.Abbreviations BSA bovine serum albumin - CE cholesterol ester - DG diglyceride - DMEM Dulbecco's modification of Eagle's medium - EL ether lipids (glyceryl ether diesters) - FAME fatty acid methyl ester - FCS fetal calf serum - FFA free fatty acids - HEPES N-2-(hydroxyethyl)piperazine-N-2-ethanesulphonic acid - MG monoglyceride - NL neutral lipid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PL phospholipid - s.a specific activity - TG triglyceride - TLC thin layer chromatography  相似文献   

17.
Lipids of blood plasma of lampreys and frogs are composed of phospholipids, triglycerides, free fatty acids (FA), cholesterol, cholesterol esters, and waxes. The lipids content in plasma of frogs is markedly lower as compared with that of lampreys. However, the percentage of lipid components is represented by close values. Fluidity of triglycerides and phospholipids in lampreys is determined predominantly by monoenic acids and polyenoic acids of the ω-3-type, whereas that in frogs—by monoenic acids and polyenic acids of the ω-6-type. Free FA are represented mainly by saturated and monoenic acids.  相似文献   

18.
Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn-1,2- and sn-2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn-1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn-1 and sn-3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn-1 and lower in the sn-2 position. These results suggest that the fatty acid of the sn-1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn-2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism.  相似文献   

19.
The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain. The functional consequences of brain cytokine action (also called neuroinflammation) are alterations in cognition, mood and behaviour, a hallmark of altered well-being. In addition, proinflammatory cytokines play a key role in depression and neurodegenerative diseases linked to aging. Polyunsaturated fatty acids (PUFA) are essential nutrients and essential components of neuronal and glial cell membranes. PUFA from the diet regulate both prostaglandin and proinflammatory cytokine production. n-3 fatty acids are anti-inflammatory while n-6 fatty acids are precursors of prostaglandins. Inappropriate amounts of dietary n-6 and n-3 fatty acids could lead to neuroinflammation because of their abundance in the brain and reduced well-being. Depending on which PUFA are present in the diet, neuroinflammation will, therefore, be kept at a minimum or exacerbated. This could explain the protective role of n-3 fatty acids in neurodegenerative diseases linked to aging.  相似文献   

20.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号