首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

2.
It has been suggested that pituitary hormone might be associated with bone metabolism. To investigate the role of thyroid-stimulating hormone (TSH) in bone metabolism, we designed the present study as follows. After weaning, TSH receptor (TSHR) null mice (Tshr/) were randomly divided into a thyroxine treatment group (n=10) or non-treatment group (n=10); the treatment group received a dose of desiccated thyroid extract at 100 ppm daily for 5 weeks. Age-matched wild-type (Tshr+/+, n=10) and heterozygote mice (Tshr+/, n=10) served as controls. After 5 weeks, the animals were sacrificed, and the femurs were collected for histomorphometrical and biomechanical analyses. In addition, the effect of TSH on osteoclastogenesis was examined in the RAW264.7 osteoclast cell line. We found that compared with Tshr+/+ mice, Tshr/ and Tshr+/ mice had lower bone strength. The histomorphometric results showed that trabecular bone volume, osteoid surface, osteoid thickness and osteoblast surface were significantly decreased, whereas the osteoclast surface was significantly increased in both Tshr/ and Tshr+/ mice compared with Tshr+/+ mice. Bone resorption and formation in Tshr/ mice were further enhanced by thyroxine replacement. bTSH inhibited osteoclast differentiation in vitro, as demonstrated by reduced development of TRAP-positive cells and down-regulation of differentiation markers, including tartrate-resistant acid phosphatase, matrix metallo-proteinase-9 and cathepsin K in RAW264.7 cells. Our results confirm that TSH increased bone volume and improved bone microarchitecture and strength at least partly by inhibiting osteoclastogenesis.  相似文献   

3.
Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe−/− mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski’s fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.  相似文献   

4.
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tgefnb1). Col3.6-Tgefnb1 mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both genders of Col3.6-Tgefnb1 mice have increased trabecular bone volume, trabecular number, and trabecular thickness and decreased trabecular separation. Enhanced bone formation and decreased bone resorption contributed to this increase in trabecular bone mass in Col3.6-Tgefnb1 mice. Consistent with these findings, our in vitro studies showed that overexpression of ephrin B1 increased osteoblast differentiation and mineralization, osterix and collagen 1A1 expression in bone marrow stromal cells. Interaction of ephrin B1 with soluble clustered EphB2-Fc decreased osteoclast precursor differentiation into multinucleated cells. Furthermore, we demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tgefnb1 mice than in WT littermate controls. Our findings that overexpression of ephrin B1 in bone cells enhances bone mass and promotes a skeletal anabolic response to mechanical loading suggest that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.  相似文献   

5.
6.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3) mediates 1α,25(OH)2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3 +/− heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3 +/− mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3 +/− mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3 +/− mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3 +/− heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH)2D3’s actions in regulating skeletal development.  相似文献   

7.
The intrinsic permeability of bone plays an important role in the transport of nutrients and minerals within the tissue, and affects the mechanical stimuli that are related to the fate of the stem cells. The objective of this study was to establish a method to assess trabecular bone permeability using experimental and finite element (FE) modeling approaches based on micro computed tomography (µCT) images. Human cadaveric tibia cube specimens (N=23) were scanned with µCT. The permeability was measured experimentally using a custom-developed constant-head permeameter, and computationally by a poroelastic formulation to simulate the fluid flow within the discretized bone matrix and pore phase. The average of the experimentally measured permeability was 4.84×10−10 m2 with a standard deviation of 3.70×10−10 m2. A regression model of the µCT determined that the maximum bone area to total area ratio (maxBA/TA) for all slices that are perpendicular to the direction of fluid flow explained 84% of the variability of the natural logarithm of the experimentally measured permeability. The 2D measure of maxBA/TA performed better than 3D measures in general, although some parameters were reasonably well associated with permeability such as bone volume ratio (BV/TV, r=−0.71), the bone surface/bone volume (BS/BV, r=0.73), and the trabecular thickness (TbTh, r=−0.71). The correlation between the permeability predicted with FE models and experimentally measured permeability was reasonable (r=0.69), but the FE approach did not accurately represent the wide variability of permeability measured experimentally. The results of this study suggest that the changes in the trabecular bone microarchitecture have an exponential relationship with permeability, and the use of µCT-based 2D measurement of maxBA/TA performs well at predicting permeability, thus providing a convenient approach to measure this important aspect affecting biomechanical functions in the tissue.  相似文献   

8.
SOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior-posterior and proximal-distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost/ significantly rescues the Lrp6/ skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6.  相似文献   

9.
In vertebrates, craniofacial formation is accomplished by synergistic interaction of many small elements which are generated independently from distinct germ layers. Because of its complexity, the imbalance of one signaling cascade such as Wnt/β-catenin pathway easily leads to craniofacial malformation, which is the most frequent birth defect in humans. To investigate the developmental role of a newly identified activator of Wnt/β-catenin signaling, Rspo2, we generated and characterized Rspo2−/− mice. We found CLP with mild facial skeletal defects in Rspo2−/− mice. Additionally, Rspo2−/− mice also exhibited distal limb loss and lung hypoplasia, and died immediately after birth with respiratory failure. We showed the apparent reduction of Wnt/β-catenin signaling activity at the branchial arch and the apical ectodermal ridge in Rspo2−/− mice. These findings indicate that Rspo2 regulates midfacial, limb, and lung morphogenesis during development through the Wnt/β-catenin signaling.  相似文献   

10.
Postmenopausal osteoporosis is characterized by declining estrogen levels, and estrogen replacement therapy has been proven beneficial for preventing bone loss in affected women. While the physiological functions of estrogen in bone, primarily the inhibition of bone resorption, have been studied extensively, the effects of pharmacological estrogen administration are still poorly characterized. Since elevated levels of follicle-stimulating hormone (FSH) have been suggested to be involved in postmenopausal bone loss, we investigated whether the skeletal response to pharmacological estrogen administration is mediated in a FSH-dependent manner. Therefore, we treated wildtype and FSHβ-deficicent (Fshb−/−) mice with estrogen for 4 weeks and subsequently analyzed their skeletal phenotype. Here we observed that estrogen treatment resulted in a significant increase of trabecular and cortical bone mass in both, wildtype and Fshb−/− mice. Unexpectedly, this FSH-independent pharmacological effect of estrogen was not caused by influencing bone resorption, but primarily by increasing bone formation. To understand the cellular and molecular nature of this osteo-anabolic effect we next administered estrogen to mouse models carrying cell specific mutant alleles of the estrogen receptor alpha (ERα). Here we found that the response to pharmacological estrogen administration was not affected by ERα inactivation in osteoclasts, while it was blunted in mice lacking the ERα in osteoblasts or in mice carrying a mutant ERα incapable of DNA binding. Taken together, our findings reveal a previously unknown osteo-anabolic effect of pharmacological estrogen administration, which is independent of FSH and requires DNA-binding of ERα in osteoblasts.  相似文献   

11.
Receptor activator of NF‐κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter‐driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)‐induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.  相似文献   

12.
A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV −94%, −93% and −97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (−70% vs. −83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml−1, respectively, compared to 4.5±0.9 ng ml−1 in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml−1, compared to 417±58 ng ml−1 in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.  相似文献   

13.
Milk fermented with Lactobacillus helveticus (L. helveticus) contains small peptides such as isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP), which inhibit the angiotensin converting enzyme (ACE). We investigated the effects of L. helveticus fermented milk whey (Lh-whey) and its components, sour milk whey, calcium and IPP and VPP peptides, on bone cells in vitro. An osteoblast assay was performed by determining the amount of deposited calcium as an index of bone formation in cultures of mouse osteoblasts formed from bone marrow-derived osteoblast precursor cells. An osteoclast assay was performed by determining the activity of tartrate-resistant acid phosphatase released into the culture medium in cultures of mouse osteoclasts formed from bone marrow-derived osteoclast precursor cells. The Lh-whey increased bone formation 1.3-1.4 times with the 1 × 10−5, 1 × 10−4 and 1 × 10−3 solutions. The IPP and VPP peptides also demonstrated a significant 5-fold activation of bone formation in in vitro osteoblast cultures, whereas the sour milk whey and calcium had no effect. No significant effects were observed on osteoclasts in vitro with any of the study products. L. helveticus fermented milk whey contains bioactive components that increase osteoblastic bone formation in vitro. The effect may be due to the ACE-inhibitory IPP and VPP peptides, which showed a similar effect to that of the L. helveticus fermented milk whey.  相似文献   

14.
We aimed to investigate the effect of maternal exposure to NaF on mandibular bone microarchitecture and phosphocalcic plasma parameters of the offspring. For this purpose, 10-, 15-, and 21-day-old pups (n?=?6–8 per group) from two groups of mothers, control and NaF 50mg/L treated dams, were used. Plasma calcium (Ca) and phosphorus (P) levels and alkaline phosphatase activity (ALP) were measured. Fluoride concentration (F?) in bone and in stomach content was measured using potentiometry after isothermal distillation. Morphometric, histological, and histomorphometric analyses of the jaw bones were performed. Plasma Ca and P levels and ALP activity increased in 10-day and decreased in 21-day-old pups from NaF-treated mothers. Fluoride concentration in stomach content samples of 15- and 21-day-old nursing pups from mothers exposed to NaF in their drinking water was higher compared to that observed in control dam offspring. Mandibular F? content was higher in 21-day-old pups born to F?-exposed dams compared to those observed in age-matched control pups. Mandibular area increased in 21-day-old pups born to treated mothers as compared to controls. Mandibular bone volume BV/TV (%) was higher in offspring from NaF-exposed dams than in controls at all the studied times. The increase in bone volume after exposure to F? was concomitant with the increase in trabecular thickness and the decrease in trabecular separation. Altogether, our results showed that exposure to NaF during gestation and lactation increased mandibular area and bone volume of pups, with concomitant changes in phosphocalcic parameters associated with the bone modeling process.  相似文献   

15.
Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.  相似文献   

16.
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1−/− calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1−/− mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear β-catenin staining in differentiating Limd1−/− calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.  相似文献   

17.
A major medical challenge in the elderly is osteoporosis and the high risk of fracture. Telomere dysfunction is a cause of cellular senescence and telomere shortening, which occurs with age in cells from most human tissues, including bone. Telomere defects contribute to the pathogenesis of two progeroid disorders characterized by premature osteoporosis, Werner syndrome and dyskeratosis congenital. It is hypothesized that telomere shortening contributes to bone aging. We evaluated the skeletal phenotypes of mice with disrupted telomere maintenance mechanisms as models for human bone aging, including mutants in Werner helicase (Wrn−/−), telomerase (Terc−/−) and Wrn−/−Terc−/− double mutants. Compared with young wild-type (WT) mice, micro-computerized tomography analysis revealed that young Terc−/− and Wrn−/−Terc−/− mice have decreased trabecular bone volume, trabecular number and trabecular thickness, as well as increased trabecular spacing. In cortical bone, young Terc−/− and Wrn−/−Terc−/− mice have increased cortical thinning, and increased porosity relative to age-matched WT mice. These trabecular and cortical changes were accelerated with age in Terc−/− and Wrn−/−Terc−/− mice compared with older WT mice. Histological quantification of osteoblasts in aged mice showed a similar number of osteoblasts in all genotypes; however, significant decreases in osteoid, mineralization surface, mineral apposition rate and bone formation rate in older Terc−/− and Wrn−/−Terc−/− bone suggest that osteoblast dysfunction is a prominent feature of precocious aging in these mice. Except in the Wrn−/− single mutant, osteoclast number did not increase in any genotype. Significant alterations in mechanical parameters (structure model index, degree of anistrophy and moment of inertia) of the Terc−/− and Wrn−/−Terc−/− femurs compared with WT mice were also observed. Young Wrn−/−Terc−/− mice had a statistically significant increase in bone-marrow fat content compared with young WT mice, which remained elevated in aged double mutants. Taken together, our results suggest that Terc−/− and Wrn−/−Terc−/− mutants recapitulate the human bone aging phenotype and are useful models for studying age-related osteoporosis.KEY WORDS: Aging, Bone histomorphometry, Osteoporosis  相似文献   

18.

Background

Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations.

Methods

To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice.

Results

The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface.

Conclusions

Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice.

General Significance

Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.  相似文献   

19.
Notch receptors play a role in skeletal development and homeostasis, and Notch activation in undifferentiated and mature osteoblasts causes osteopenia. In contrast, Notch activation in osteocytes increases bone mass, but the mechanisms involved and exact functions of Notch are not known. In this study, Notch1 and -2 were inactivated preferentially in osteocytes by mating Notch1/2 conditional mice, where Notch alleles are flanked by loxP sequences, with transgenics expressing Cre directed by the Dmp1 (dentin matrix protein 1) promoter. Notch1/2 conditional null male and female mice exhibited an increase in trabecular bone volume due to an increase in osteoblasts and decrease in osteoclasts. In male null mice, this was followed by an increase in osteoclast number and normalization of bone volume. To activate Notch preferentially in osteocytes, Dmp1-Cre transgenics were crossed with RosaNotch mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and Notch1 intracellular domain sequences. Dmp1-Cre+/−;RosaNotch mice exhibited an increase in trabecular bone volume due to decreased bone resorption and an increase in cortical bone due to increased bone formation. Biomechanical and chemical properties were not affected. Osteoprotegerin mRNA was increased, sclerostin and dickkopf1 mRNA were decreased, and Wnt signaling was enhanced in Dmp1-Cre+/−;RosaNotch femurs. Botulinum toxin A-induced muscle paralysis caused pronounced osteopenia in control mice, but bone mass was preserved in mice harboring the Notch activation in osteocytes. In conclusion, Notch plays a unique role in osteocytes, up-regulates osteoprotegerin and Wnt signaling, and differentially regulates trabecular and cortical bone homeostasis.  相似文献   

20.
WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1−/− mice lack any obvious limb or skeletal defects, Sost−/− mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost−/−; Sostdc1−/− mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost−/− and Sost−/−; Sostdc1−/− mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号