首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in the autoimmune regulator (AIRE) gene cause a recessive Mendelian disorder autoimmune polyendocrinopathy syndrome type 1 (APS-1 or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). APS-1 patients develop multiorgan autoimmune diseases including type 1 diabetes (prevalence 12%). The AIRE protein controls the central tolerance induction in the thymus by regulating the expression levels of tissue-specific peripheral antigens, such as insulin. We hypothesized that the insulin gene (INS) polymorphisms together with the AIRE variations may predispose individuals to diabetes. The role of the AIRE gene was tested both independently and on the condition of the INS risk genotype in the Finnish type 1 diabetes sample. A total of 733 type 1 diabetic cases and 735 age- and sex-matched healthy controls were used in the analysis. Five common single nucleotide polymorphisms (SNPs) in the AIRE gene were selected from the public database (dbSNP). The −23HphI polymorphism was used as a surrogate marker for the INS gene promoter repeat. The five genotyped SNPs in the AIRE gene showed no evidence of association with type 1 diabetes. As expected, the INS gene polymorphism −23HphI was significantly associated with susceptibility to type 1 diabetes (P=6.8×10−12, χ2 test). When the subclass of patients carrying the homozygote genotype of the INS gene was used in the analysis, the AIRE polymorphisms showed no association with the disease. In conclusion, the AIRE gene does not seem to contribute to disease susceptibility in Finnish type 1 diabetic patients, whereas the insulin gene represents a notable risk factor for disease in this population.  相似文献   

3.
The -112A>C polymorphism (rs10011540) of the gene for uncoupling protein 1 (UCP1) has been associated with type 2 diabetes mellitus in Japanese individuals. The aim of the present study was to investigate the effects of this polymorphism, as well as the well-known -3826A>G polymorphism (rs1800592), on clinical characteristics of type 2 diabetes. We determined the genotypes of the two polymorphisms in 93 Japanese patients with type 2 diabetes. Intramyocellular lipid content and hepatic lipid content (HLC) were measured by magnetic resonance spectroscopy. No significant differences in age, sex, BMI, or HbA1c level were detected between type 2 diabetic patients with the -112C allele and those without it. However, homeostasis model assessment for insulin resistance (p=0.0089) and HLC (p=0.012) was significantly greater in patients with the -112C allele. We did not detect an association of the -3826A>G polymorphism (rs1800592) of UCP1 gene with any measured parameters. These results suggest that insulin resistance caused by the -112C allele influences the susceptibility to type 2 diabetes.  相似文献   

4.
The double transgenic mice (dTg) were obtained by mating: (i) transgenic mice expressing the hemagglutinin of influenza virus under the insulin promoter with (ii) transgenic mice expressing specific T lymphocytes with receptor for the immunodominant epitope of the same virus. In this study we show that dTg mice developed type 1 diabetes mellitus associated with hyperglycemia, low level of plasma insulin, glucosuria, weight loss and approximately 90% mortality (at 3 months biological age). The membrane of red blood cells was more sensitive to osmotic shock in diabetic mice, compared to non-diabetic mice, assessing systemic oxidative stress. Both vasoconstriction and vasorelaxation of the renal arteries decreased significantly in diabetic mice (compared to the control group of non-diabetic mice) related to the phenotypic change of endothelium and smooth muscle cells within the artery wall. This animal model, may be used in developing various strategies to study pancreatic beta-cell function, as well as for a better metabolic control conducting to a reduced risk of vascular complications.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine originally described as an angiogenic factor. A number of reports have recently demonstrated that VEGF increases pancreatic islet survival after islet transplantation by stimulating angiogenesis and improving islet revascularization. Whether VEGF can protect from the autoimmune destruction of insulin-producing beta-cells that characterizes the development of type 1 diabetes is presently unknown. To clarify this issue, we studied the association of three polymorphisms of the promoter region of VEGF with type 1 diabetes in the Italian and the Finnish populations. The polymorphisms considered [C(-2578)A, G(-1190)A, and G(-1154)A] are known to modulate in vitro and in vivo VEGF expression. We found that VEGF promoter genotypes are associated with type 1 diabetes in both populations, but with different combinations. In Italian individuals, the -2578AA and -1190AA genotypes are associated with type 1 diabetes and accelerate its onset, while in Finnish individuals, -1154GG and -1190GG protect from type 1 diabetes and delay its onset. In conclusion, because the expected functional consequence of both genotype combinations is a reduced VEGF expression in diabetic patients, we propose a protective role of VEGF in the development of type 1 diabetes.  相似文献   

6.
Preventing skeletal muscle atrophy is critical for maintaining quality of life, but it is often a challenging goal for the elderly and patients with severe conditions. We hypothesized that acupuncture in place of exercise training is an alternative non-pharmacological intervention that can help to prevent muscle atrophy. To elucidate the effects of acupuncture on skeletal muscle atrophy caused by hindlimb suspension (HS), we performed acupuncture on mice according to two different methods: acupuncture with electrical stimulation (EA: electroacupuncture) and without electrical stimulation (MA: manual acupuncture). A needle was retained in the gastrocnemius muscle for 30 min every day for 2 weeks in the EA and MA groups. In the EA group, 30 min of repetitive electrical stimulation (1 Hz, 1 ms pulse width, 6.5 mA intensity) was also applied. HS significantly reduced muscle mass and the cross-sectional area of the soleus muscles. This HS-induced reduction was significantly improved in the EA group, although the level of improvement remained insufficient when compared with the control group. We found that the mRNA expression levels of atrogin-1 and MuRF1, which play a principal role in muscle-specific degradation as E3 ubiquitin ligases, were significantly increased in the HS group compared to the control group. EA and MA reduced the HS-induced upregulation of atrogin-1 (p < 0.01 in EA and MA) and MuRF1 (p < 0.01 in EA) mRNAs. We also found that the expression levels of PI3K, Akt1, TRPV4, adenosine A1 receptor, myostatin, and SIRT1 mRNAs tended to be increased by HS. EA and MA further increased the HS-induced upregulation of Akt1 (p < 0.05 in MA) and TRPV4 (p < 0.05 in MA) mRNAs. We concluded that acupuncture partially prevented skeletal muscle atrophy. This effect might be due to an increase in protein synthesis and a decrease in protein degradation.  相似文献   

7.
8.
9.
Autologous hematopoietic stem cell transplantation (HSCT) has recently been performed as a novel strategy to treat patients with new-onset type 1 diabetes (T1D). However, the mechanism of autologous HSCT-induced remission of diabetes remains unknown. In order to help clarify the mechanism of remission-induction following autologous HSCT in patients with T1D, mice treated with multiple low doses of streptozotocin to induce diabetes were used as both donors (n = 20) and recipients (n = 20). Compared to streptozocin-treated mice not receiving transplantation, syngeneic bone marrow transplantation (syn-BMT) from a streptozocin-treated diabetic donor, if applied during new-onset T1D (day 10 after diabetes onset), can reverse hyperglycemia without relapse (P < 0.001), maintain normal blood insulin levels (P < 0.001), and preserve islet cell mass. Compared to diabetic mice not undergoing HSCT, syn-BMT, results in restoration of Tregs in spleens (P < 0.01), increased Foxp3 mRNA expression (P < 0.01) and increased Foxp3 protein expression (P < 0.05). This diabetic-remission-inducing effect occurred in mice receiving bone marrow from either streptozocin-treated diabetic or non-diabetic normal donors. We conclude that autologous HSCT remission of diabetes is more than transient immune suppression, and is capable of prolonged remission-induction via regeneration of CD4+CD25+FoxP3+ Tregs.  相似文献   

10.
BACKGROUND Type 1 diabetes(T1D),a chronic metabolic and autoimmune disease,seriously endangers human health.In recent years,mesenchymal stem cell(MSC)transplantation has become an effective treatment for diabetes.Menstrual bloodderived endometrial stem cells(MenSC),a novel MSC type derived from the decidual endometrium during menstruation,are expected to become promising seeding cells for diabetes treatment because of their noninvasive collection procedure,high proliferation rate and high immunomodulation capacity.AIM To comprehensively compare the effects of MenSC and umbilical cord-derived MSC(UcMSC)transplantation on T1D treatment,to further explore the potential mechanism of MSC-based therapies in T1D,and to provide support for the clinical application of MSC in diabetes treatment.METHODS A conventional streptozotocin-induced T1D mouse model was established,and the effects of MenSC and UcMSC transplantation on their blood glucose and serum insulin levels were detected.The morphological and functional changes in the pancreas,liver,kidney,and spleen were analyzed by routine histological and immunohistochemical examinations.Changes in the serum cytokine levels in the model mice were assessed by protein arrays.The expression of target proteins related to pancreatic regeneration and apoptosis was examined by western blot.RESULTS MenSC and UcMSC transplantation significantly improved the blood glucose and serum insulin levels in T1D model mice.Immunofluorescence analysis revealed that the numbers of insulin+and CD31+cells in the pancreas were significantly increased in MSC-treated mice compared with control mice.Subsequent western blot analysis also showed that vascular endothelial growth factor(VEGF),Bcl2,Bcl-xL and Proliferating cell nuclear antigen in pancreatic tissue was significantly upregulated in MSC-treated mice compared with control mice.Additionally,protein arrays indicated that MenSC and UcMSC transplantation significantly downregulated the serum levels of interferonγand tumor necrosis factorαand upregulated the serum levels of interleukin-6 and VEGF in the model mice.Additionally,histological and immunohistochemical analyses revealed that MSC transplantation systematically improved the morphologies and functions of the liver,kidney,and spleen in T1D model mice.CONCLUSION MenSC transplantation significantly improves the symptoms in T1D model mice and exerts protective effects on their main organs.Moreover,MSC-mediated angiogenesis,antiapoptotic effects and immunomodulation likely contribute to the above improvements.Thus,MenSC are expected to become promising seeding cells for clinical diabetes treatment due to their advantages mentioned above.  相似文献   

11.
HLA polymorphism in type 1 diabetes Tunisians   总被引:4,自引:0,他引:4  
Several studies of the association between HLA and type 1 diabetes have been carried out revealing differences between ethnic groups. Our study, as part of the studies that should be performed about this association in the rest of the word, aims at elucidating the HLA DRB1, DQB1 polymorphism in Tunisian type 1 diabetes. This study includes 43 unrelated type 1 diabetes patients, and their mean age at onset is less than 15 years. Analysis of the frequency of alleles and haplotypes in these subjects, compared to a reference group (n = 101) led to the following results. 1) The Tunisian insulin-dependent diabetics present similarities as well as differences with other ethnic groups (Caucasians, North Africans). 2) The haplotype DRB1*04 DQ*0302 and DRB1*03 DQB1*0201 is positively associated to type 1 diabetes. 3) The heterozygotic genotype DRB1*04 DQB1*0302 / DRB1*03 DQB1*0201 is strongly associated to type 1 diabetes. 4) The haplotypes DRB1*01501 DQB1*0602 and DRB1*11 DQB1*0301 proved to be protective. In addition, the study of the subtypes DRB1*04 showed that alleles DRB1*0405 predispose to type 1 diabetes, whereas the allele DRB1*0403, which is in linkage disequilibrium with the DQB1*0402 in the Tunisian population, has a protective effect.  相似文献   

12.
2型糖尿病是一种常见的慢性消耗性疾病,其发病机制十分复杂,流行病学研究表明,肥胖、高热量饮食、体力活动不足及年龄增大是2型糖尿病最主要的环境因素。它是一种以胰岛素抵抗和胰岛素分泌不足为特征的代谢性疾病。肠道菌群作为进入人体的一个重要环境因素,肠道微生物的菌群变化影响宿主能量物质的吸收,调节肠道的分泌功能和非特异性免疫功能,从营养、代谢、疾病等各方面与我们生命活动相关。肠道菌群已成为我们身体的一部分,影响宿主的免疫,在肥胖、糖尿病、代谢综合征等疾病中都具有非常重要的作用。  相似文献   

13.
14.
磺酰脲受体1基因多态性与2型糖尿病的相关性   总被引:1,自引:1,他引:0  
目的:研究磺酰脲受体1(sulfonylurea receptorl,SUR1)基因外显子16-3c/t多态性与湖北汉族人群2型糖尿病的相关性。方法:采用同胞对(2型糖尿病人及其正常同胞)和随机病例一对照两种实验设计,应用PCR-RFLP方法分析共405个样本的SUR1基因外显子16-3c/t多态性,并测定身高、体重、腰围、臀围、血压、空腹血糖等生理生化指标。结果:两种实验设计中病例组与对照组的基因型和等位基因频率均无显著性差异(P〉0.05)。结论:在湖北汉族人群中未发现SUR1基因外显子16-3c/t多态性与2型糖尿病之间存在关联,该基因座可能不是该人群的致病基因。  相似文献   

15.
Human tissue kallikrein (hK1) is reduced in hypertension, cardiovascular and renal diseases. There is little information on the participation of hK1 in type 1 diabetes mellitus (DM), type 2 DM, and gestational diabetes mellitus (GDM), respectively. The aim of this study was to evaluate the roles of insulin and hyperglycemia on urinary hK1 activity in type 1 DM and in GDM. Forty-three type 1 DM patients (5–35 years, disease duration ?5 years, receiving insulin, HbA1c > 7.6%) were selected. Forty-three healthy individuals, paired according to gender and age, were used as controls. Thirty GDM patients (18–42 years, between the 24th and 37th week of pregnancy, recently diagnosed, not under insulin therapy) were also selected. Thirty healthy pregnant (18–42 years, between the 24th and 37th week of pregnancy) and 30 healthy non-pregnant women (18–42 years) were selected as controls. Random midstream urine was used. hK1 amidase activity was estimated with D-Val-Leu-Arg-Nan substrate. Creatinine was determined by Jaffe’s method. hK1 specific amidase activity was expressed as μM/(min mg creatinine) to correct for differences in urine flow rate. hK1 specific amidase activity was significantly higher in the urine of type 1 DM than in controls, and in the urine of GDM patients than in healthy pregnant women and healthy non-pregnant women, respectively. The data suggest that hyperglycemia, rather than insulin, is involved in the mechanism of increased hK1 specific amidase activity in both type 1 DM and GDM patients, respectively.  相似文献   

16.
Besides a cholesterol-lowering effect, simvastatin possesses anti-inflammatory properties attributed to inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and/or direct binding to, and inhibition of, the integrin lymphocyte function associated antigen-1 (LFA-1). We have shown that simvastatin protects against multiple low dose streptozotocin (MLDS) induced type 1 diabetes in mice. Presently, we examined if this effect could be abolished by co-administration of mevalonic acid, thus determining if the protective effect is dependent or independent of inhibition of HMG-CoA reductase. Mevalonic acid did not affect the protective effect of simvastatin against MLDS diabetes. Moreover, spleens from these mice did not show any signs of toxic side-effects, thus excluding the possibility that the protective effect is secondary to a general inflammatory response. We suggest that simvastatin’s protective effect mainly is independent of HMG-CoA reductase inhibition. This implies that inhibition of LFA-1 activation is important for the protective effect exerted by simvastatin.  相似文献   

17.
Insulin-like growth factor-1 (IGF-1) is a positive regulator in proliferation and differentiation of skeletal muscle cells, while myostatin (MSTN) is a member of transforming growth factor beta superfamily that acts as a negative regulator of skeletal muscle mass. The present study was performed to detail whether a correlation exists between MSTN and IGF-1 in skeletal muscle of IGF-1 knockout mice (IGF-1(-/-)) and their wild type (WT; i.e., IGF-1(+/+)) littermates. The body weight of IGF-1(-/-) animals was 32% that of WT littermates. The fiber cross-sectional areas (CSA) and number of fibers in M. rectus femoris of IGF-1(-/-) animals were 49 and 59% those of WT animals, respectively. Thus, muscle hypoplasia of IGF-1(-/-) undoubtedly was confirmed. Myostatin mRNA levels and protein levels were similar between M. gastrocnemius of IGF-1(-/-) and WT animals. Myostatin immunoreactivity was similarly localized in muscle fibers of both IGF-1(-/-) and WT M. rectus femoris. The mRNA levels of MyoD family (Myf5, MyoD, MRF4, myogenin) were differentially expressed in IGF-1(-/-)M. gastrocnemius, in which the mRNA expression of MRF4 and myogenin was significantly lower, whereas there were no changes in the mRNA expression of Myf5 and MyoD. These findings first describe that myostatin expression is not influenced by intrinsic failure of IGF-1, although MRF4 and myogenin are downregulated.  相似文献   

18.
Despite a large body of evidence describing associations between viruses and the development of type 1 diabetes (T1D) in genetically prone individuals, clearly defining causative infectious agents has not been successful. A likely explanation is that the link between infections and autoimmunity is more multifaceted than we initially assumed. Viral footprints might be hard to detect systemically or in the target organ once autoimmunity has been initiated, and several infections might have to act in concert to precipitate clinical autoimmunity. Furthermore, cells cross-reactive between viral and self-antigens might express low avidity T cell receptors and only be present transiently in the blood of affected individuals. In addition, there are two new observations from animal models that we should take into account at this point: first, viral infections alone might not be able to induce disease in the absence of other inflammatory factors (supporting the "fertile field hypothesis" [M.G. von Herrath et al., Microorganisms and autoimmunity: making the barren field fertile? Nat. Rev. Microbiol. 1 (2003) 151-157, ]). Second, increasing evidence indicates that viruses can play a role in preventing rather than enhancing T1D development (supporting the "hygiene hypothesis" [J.F. Bach, Protective role of infections and vaccinations on autoimmune diseases. J. Autoimmun. 16 (2001) 347-353]). In this article we will present an overview of the early events and requirements that could account for T1D predisposition and development, and explain how these can be modulated by viral infections. Focusing on coxsackie B and lymphocytic choriomeningitis virus infections, we will discuss new data that can hopefully help us understand how virus-induced inflammation can positively or negatively affect the clinical outcome of islet-autoimmunity and T1D.  相似文献   

19.
To search autoantigens in autoimmune pancreatitis (AIP), we have screened the human pancreas cDNA library with a patient’s serum and obtained 10 positive clones. Seven out of 10 clones were amylase α-2A, the autoantibody to which was specifically detected in sera from patients with AIP and fulminant type 1 diabetes (FT1DM) [T. Endo, S. Takizawa, S. Tanaka, M. Takahashi, H. Fujii, T. Kamisawa, T. Kobayashi, Amylase α-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes mellitus, Diabetes 58 (2009) 732-737]. Sequencing of 1 out of remaining 3 positive clones revealed that it was identical to heat shock protein 10 (HSP 10) cDNA. Using a recombinant HSP 10, we have developed enzyme-linked immunosorbent assay (ELISA) system for detecting autoantibodies against HSP 10. We found that autoantibody against HSP 10 was also produced with high frequency in sera from patients with AIP (92%) and FT1DM (81%), but not in chronic alcoholic pancreatitis (8%) or healthy volunteers (1.4%). These results suggest that an autoantibody against HSP 10 is also a new diagnostic marker for both AIP and FT1DM.  相似文献   

20.
Vesicular monoamine transporter 2 (VMAT2) is expressed in pancreatic beta cells and has recently been proposed as a target for measurement of beta cell mass in vivo. We questioned, (1) What proportion of beta cells express VMAT2? (2) Is VMAT2 expressed by other pancreatic endocrine or non-endocrine cells? (3) Is the relationship between VMAT2 and insulin expression disturbed in type 1 (T1DM) or type 2 diabetes (T2DM)? Human pancreas (7 non-diabetics, 5 T2DM, 10 T1DM) was immunostained for insulin, VMAT2 and other pancreatic hormones. Most beta cells expressed VMAT2. VMAT2 expression was not changed by the presence of diabetes. In tail of pancreas VMAT2 immunostaining closely correlated with insulin staining. However, VMAT2 was also expressed in some pancreatic polypeptide (PP) cells. Although VMAT2 was not excluded as a target for beta cell mass measurement, expression of VMAT2 in PP cells predicts residual VMAT2 expression in human pancreas even in the absence of beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号