首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Myostatin gene silenced by RNAi show a zebrafish giant phenotype   总被引:23,自引:0,他引:23  
Myostatin is a member of the transforming growth factor-beta (TGF-beta) family that functions as a negative regulator of skeletal muscle development and growth. Recently, it has been reported that the transgenic zebrafish expressing myostatin prodomain exhibited an increased number of fiber in skeletal muscle. Other novel results suggest that myostatin plays a mayor role during myogenesis, apart from inhibition of proliferation as well as differentiation. We have investigated the ability of double-stranded RNA (dsRNA) to inhibit myostatin function in the zebrafish. By microinjection dsRNA, corresponding to biologically active C-terminal domain from aminoacid 268 to end codon of tilapia myostatin protein, we produced an increased body mass in treated fish. The dsRNA injection in early development stage in zebrafish produced hyperplasia or hypertrophy. In addition, the interference of gene function showed a strong dependence on the amount of dsRNA.  相似文献   

3.
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Depression of myostatin activity leads to increased muscle growth and carcass lean yield. In an attempt to down-regulate myostatin, transgenic mice were produced with a ribozyme-based construct or a myostatin pro domain construct. Though the expression of the ribozyme was detected, muscle development was not altered by the ribozyme transgene. However, a dramatic muscling phenotype was observed in transgenic mice carrying the myostatin pro domain gene. Expression of the pro domain transgene at 5% of beta-actin mRNA levels resulted in a 17-30% increase in body weight (P < 0.001). The carcass weight of the transgenic mice showed a 22-44% increase compared with nontransgenic littermates at 9 weeks of age (16.05 +/- 0.67 vs. 11.16 +/- 0.28 g in males; 9.99 +/- 0.38 vs. 8.19 +/- 0.19 g in females, P < 0.001). Extreme muscling was present throughout the whole carcass of transgenic mice as hind and fore limbs and trunk weights, all increased significantly (P < 0.001). Epididymal fat pad weight, an indicator of body fat, was significantly decreased in pro domain transgenic mice (P < 0.001). Analysis of muscle morphology indicated that cross-sectional areas of fast-glycolytic fibers (gastrocnemius) and fast-oxidative glycolytic fibers (tibialis) were larger in pro domain transgenic mice than in their controls (P < 0.01), whereas fiber number (gastrocnemius) was not different (P > 0.05). Thus, the muscular phenotype is attributable to myofiber hypertrophy rather than hyperplasia. The results of this study suggest that the over-expression of myostatin pro domain may provide an alternative to myostatin knockouts as a means of increasing muscle mass in other mammals.  相似文献   

4.
The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.  相似文献   

5.
Recently, tilapia hepcidin (TH)1-5 was characterized, and its antimicrobial functions against several pathogens were reported. The antimicrobial functions of another shrimp antimicrobial peptide (AMP), chelonianin, were also characterized using a recombinant chelonianin protein (rcf) that was expressed by a stably transfected Chinese hamster ovary (CHO) cell line against pathogen infections in fish. The function of the overexpression of both AMPs in zebrafish muscles was not examined in previous studies. Herein, we investigated the antimicrobial functions of TH1-5 and chelonianin against Vibrio vulnificus (204) and Streptococcus agalactiae (SA48) in transgenic TH1-5 zebrafish and transgenic chelonianin zebrafish. The presence of TH1-5 and chelonianin enhanced the inhibitory ability in transgenic AMP zebrafish against the two different bacterial infections. The bacterial number of either V. vulnificus (204) or S. agalactiae (SA48) had decreased at 96?h after injection into transgenic AMP zebrafish muscle compared to non-transgenic zebrafish muscle. Additionally, immune-related gene expressions analyzed by real-time PCR studies showed the modulation of several genes including interleukin (IL)-10, IL-22, IL-26, MyD88, Toll-like receptor (TLR)-1, TLR-3, TLR-4, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, and lysozyme, and significant differences were found between transgenic AMP zebrafish and wild-type zebrafish injected with PBS at 1-24?h. These results suggest that several immune-related gene expressions were induced in transgenic TH1-5 and chelonianin zebrafish which effectively inhibited bacterial growth. The survival rate dropped to 86.6% in transgenic chelonianin zebrafish after 28 days of infection compared of the 50% survival rate in transgenic TH1-5 zebrafish after 28 days of infection. Overall, these results indicate that TH1-5 and chelonianin possess the potential to be novel candidate genes for aquaculture applications to treat fish diseases.  相似文献   

6.
Myostatin is a member of the transforming growth factor-β (TGF-β) super-family and functions as a negative regulator of muscle growth. Binding of the specific receptor, Activin receptor IIB (Act RIIB), with myostatin or other related TGF-β members, could be inhibited by the activin-binding protein follistatin (Fst) in mammals. Overexpressing Fst in mouse skeletal muscle leads to muscle hypertrophy and hyperplasia. To determine if Fst has similar roles in fish, we generated transgenic zebrafish expressing high levels of zebrafish Fst1 using the promoter of the zebrafish skeletal muscle-specific gene, myosin, light polypeptide 2, skeletal muscle (Mylz2). Independent transgenic zebrafish lines exhibited elevated expression levels of myogenic regulatory genes MyoD and Pax7 in muscle cells. Adult Fst1 overexpressing transgenic zebrafish exhibited a slight body weight increase. The high level of Fst1 expression dramatically increased myofiber numbers in skeletal muscle, without significantly changing the fiber size. Our findings suggest that Fst1 overexpression can promote zebrafish muscle growth by enhancing myofiber hyperplasia.  相似文献   

7.
8.
Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.  相似文献   

9.
In the present study, new applications of the transgenic technology in developing novel varieties of ornamental fish and bioreactor fish were explored in a model fish, the zebrafish (Danio rerio). Three "living color" fluorescent proteins, green fluorescent protein (GFP), yellow fluorescent protein (YFP), and red fluorescent protein (RFP or dsRed), were expressed under a strong muscle-specific mylz2 promoter in stable lines of transgenic zebrafish. These transgenic zebrafish display vivid fluorescent colors (green, red, yellow, or orange) visible to unaided eyes under both daylight and ultraviolet light in the dark. The level of foreign protein expression is estimated between 3% and 17% of total muscle proteins, equivalent to 4.8-27.2mg/g wet muscle tissue. Thus, the fish muscle may be explored as another useful bioreactor system for production of recombinant proteins. In spite of the high level of foreign protein expression, the expression of endogenous mylz2 mRNAs was not negatively affected. Furthermore, compared to the wild-type fish, these fluorescent transgenic fish have no advantage in survival and reproduction.  相似文献   

10.
Myostatin plays a robust, negative role in controlling muscle mass. A disruption of myostatin function by transgenic expression of its propeptide (the 5'region, 866 nucleotides) results in significant muscle growth (Yang et al., 2001. Mol Rep Dev 60:351-361). Studies from myostatin and the propeptide transgene mRNA indicated that myostatin mRNA was detected at day 10.5 postcoitum in fetal mice. Its level remained low, but increased by 180% during the postnatal fast-growth period (day 0-10). An early, high-level postnatal expression of the transgene was identified as being responsible for a highly muscled phenotype. High-fat diet induces adiposity in rodents. To study the effects of dietary fat on muscle growth and adipose tissue fat deposition in the transgenic mice, we challenged the mice with a high-fat diet (45% kcal fat) for 21 weeks. Transgenic mice showed 24%-50% further enhancement of growth on the high-fat diet compared to the normal-fat diet (P = 0.004) from 17 to 25 weeks of age. The total mass of the main muscles of transgenic mice showed a 27% increase on the high-fat diet compared to the normal-fat diet (P = 0.004), while the white adipose tissue mass of the transgenic mice was not significantly different from that of wild-type mice fed a normal-fat diet (P = 0.434). The high-fat diet induced wild-type mice developed 190% greater mass of white adipose tissues compared to the normal-fat diet (P = 0.008), which primarily resulted from enlarged adipocytes. These results demonstrate that disruption of myostatin function by its propeptide shifted dietary fat utilization toward muscle tissues with minimal effects on adiposity. These results suggest that enhancing muscle growth by myostatin propeptide or other means during the early developmental stage may serve as an effective means for obesity prevention.  相似文献   

11.
We compared the levels of growth hormone (GH) mRNA in the pituitary, plasma GH concentration, and altered phenotype in rats heterozygous and homozygous for an antisense RNA transgene targeted to the rat GH gene, with those in nontransgenic rats. We initially investigated whether the transgene promoter, which is connected to four copies of a thyroid hormone response element (TRE) that increases promoter activity, affected in vivo transgene expression in the pituitary of the transgenic rats. Plasma GH concentration correlated negatively with T, injection in surgically thyroidectomized heterozygous transgenic rats. There was a reduction of about ?35–40% in GH mRNA levels in the pituitary of homozygous animals compared with those in non-transgenic rats. Plasma GH concentration was significantly ?25–32 and ?29–41% lower in heterozygous and homozygous transgenic rats, respectively, compared with that in nontransgenic animals. Furthermore, the growth rates in homozygous transgenic rats were reduced by ?72–81 and ?51–70% compared with those of their heterozygous and nontransgenic littermates, respectively. The results of these studies suggested that the biological effect of GH in vivo is modulated dose-dependently by the antisense RNA transgene. The rat GH gene can therefore be targeted by antisense RNA produced from a transgene, as reflected in the protein and RNA levels. © 1995 Wiley-Liss, Inc.  相似文献   

12.
In a long-term growth trial, transgenic tilapia Oreochromis niloticus L. showed a 2·5-fold increase in growth compared with non-transgenic siblings. At 7 months, mean mass of transgenic tilapia was 653 g compared with 260 g for non-transgenic siblings. A significant increase ( P >0·01) in head: total length ratio, viscera-somatic index and hepato-somatic index was observed in transgenic fish. Female gonado-somatic index ( I G) was found to be lower in transgenics than non-transgenic siblings in both mixed and separate culture conditions. Transgenic male I G values were found to be higher in mixed culture and lower in separate culture than that of their non-transgenic siblings. Food conversion efficiency was more than 20% greater in the transgenic fish. In a second shorter-term growth performance trial, the transgenic fish grew to about four times the size of their non-transgenic siblings. A digestibility trial suggested that transgenic tilapia were more efficient utilizers of protein, dry matter and energy. Apparent digestibility of protein and apparent energy digestibility were higher in the transgenic fish.  相似文献   

13.
Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.  相似文献   

14.
Follistatin 1 (Fst1) is a binding protein of activin and some other members of the transforming growth factor beta superfamily. It plays a key role in the regulation of gonadal function in vertebrates. An oocyte-specific promoter, derived from the zona pellucida 3 (zp3) gene, was used to create transgenic fst1 zebrafish (Danio rerio). Three independent oocyte-specific overexpression fst1 transgenic zebrafish lines were generated. Decreased levels of phosphorylated Smad3 were observed in ovarian tissues in fst1 transgenic fish compared with those from their control female siblings. Analyses on the numbers of mature eggs also indicated the attenuated oocyte maturation in the fst1 transgenic fish and in the females administered recombinant human Fst protein. Remarkably, when raised in the same tank with their control siblings, a significantly larger proportion of the fst1 transgenic population developed as males compared to the controls. Moreover, assessing the levels of active caspase 3 in gonadal tissues at 30 days postfertilization, we observed increased levels of apoptosis in the transitioning gonads of the transgenic fish compared to nontransgenic control siblings. Our results demonstrate that zebrafish Fst1 not only acts as an inhibitory binding protein of activin in the regulation of oocyte maturation in adult females but also plays a potential role in the masculinization of juveniles. Overall, the present study contributes to our understanding of the paracrine roles of fst1 as well as normal oocyte maturation and gonadal differentiation.  相似文献   

15.
The myostatin (MSTN)-null phenotype in mammals is characterized by extreme gains in skeletal muscle mass or "double muscling" as the cytokine negatively regulates skeletal muscle growth. Recent attempts, however, to reproduce a comparable phenotype in zebrafish have failed. Several aspects of MSTN biology in the fishes differ significantly from those in mammals and at least two distinct paralogs have been identified in some species, which possibly suggests functional divergence between the different vertebrate classes or between fish paralogs. We therefore conducted a phylogenetic analysis of the entire MSTN gene sub-family. Maximum likelihood, Bayesian inference, and bootstrap analyses indicated a monophyletic distribution of all MSTN genes with two distinct fish clades: MSTN-1 and -2. These analyses further indicated that all Salmonid genes described are actually MSTN-1 orthologs and that additional MSTN-2 paralogs may be present in most, if not all, teleosts. An additional zebrafish homolog was identified by BLAST searches of the zebrafish Hierarchical Tets Generation System database and was subsequently cloned. Comparative sequence analysis of both genes (zebrafish MSTN (zfMSTN)-1 and -2) revealed many differences, primarily within the latency-associated peptide regions, but also within the bioactive domains. The 2-kb promoter region of zfMSTN-2 contained many putative cis regulatory elements that are active during myogenesis, but are lacking in the zfMSTN-1 promoter. In fact, zfMSTN-2 expression was limited to the early stages of somitogenesis, whereas zfMSTN-1 was expressed throughout embryogenesis. These data suggest that zfMSTN-2 may be more closely associated with skeletal muscle growth and development. They also resolve the previous ambiguity in classification of fish MSTN genes.  相似文献   

16.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

17.
CRISPR/Cas9 has emerged as one of the most popular genome editing tools due to its simple design and high efficiency in multiple species. Myostatin (MSTN) negatively regulates skeletal muscle growth and mutations in myostatin cause double-muscled phenotype in various animals. Here, we generated myostatin mutation in Erhualian pigs using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. The protein level of myostatin precursor decreased dramatically in mutant cloned piglets. Unlike myostatin knockout Landrace, which often encountered health issues and died shortly after birth, Erhualian pigs harboring homozygous mutations were viable. Moreover, myostatin knockout Erhualian pigs exhibited partial double-muscled phenotype such as prominent muscular protrusion, wider back and hip compared with wild-type piglets. Genome editing in Chinese indigenous pig breeds thus holds great promise not only for improving growth performance, but also for protecting endangered genetic resources.  相似文献   

18.
Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.  相似文献   

19.
To study the frequency of germ-line transformation and to examine the reproducibility of tissue-specific transgene expression, we produced several lines of transgenic zebrafish expressing a recombinant chloramphenicol acetyltransferase (CAT) gene. Supercoiled plasmids containing both Rous sarcoma virus and SV-40 promoter sequences upstream of the CAT coding region were injected into zebrafish embryos prior to first cleavage. CAT activity could be detected in batches of injected embryos as early as 8 h and up to at least 12 days post-fertilization. Approximately 18% of injected fish raised to maturity exhibited CAT activity in their fins, and approximately 5% of injected fish became stable germ-line transformants. Breeding studies indicated that although transgenic founder fish were frequently germ-line mosaics, transgenic individuals of subsequent generations were fully hemizygous for the transgene marker. The transgenes present in the F1 progeny of four independent lines were relatively well expressed in fin and skin, while lower levels of expression were observed in heart, gill and muscle. Little or no CAT expression was observed in the brain, liver and gonad. A monoclonal antibody directed against the CAT gene product consistently revealed variegated patterns of CAT expression in ectodermally derived fin epidermal cells in three of these lines. These results show that it is possible to efficiently produce stable germ-line transformants of the zebrafish and to observe reproducible tissue-specific patterns of transgene expression in this organism. Possible mechanisms for the variegated expression observed within tissues are also considered.  相似文献   

20.
Zebrafish (Danio rerio) have become an important model organism for developmental biology and human health studies. We recently demonstrated differential growth patterns between the zebrafish and a close relative the giant danio (Danio aequipinnatus), where the giant danio appears to exhibit indeterminate growth similar to most fish species important for commercial production, while zebrafish exhibit determinate growth more similar to mammalian growth. This study focused on evaluating muscle growth regulation differences in adult zebrafish and giant danio utilizing growth hormone treatment as a mode of growth manipulation. Growth hormone treatment resulted in increased overall growth in giant danio, but failed to increase growth in the zebrafish. Growth hormone treatment increased muscle IGF-I and GHrI gene expression in both species, but to a larger degree in the giant danio. In contrast, zebrafish exhibited a larger increase in IrA and IGF-IrB gene expression in muscle in response to GH treatment. In addition muscle myostatin levels were differentially regulated between the two species, with a down-regulation observed in rapidly growing, GH-treated giant danio and an up-regulation in zebrafish not actively growing in response to GH. This is the first report of differential expression of growth-regulating genes in closely related fish species exhibiting opposing growth paradigms. These results further support the role that the zebrafish and giant danio can play important model organisms for determinate and indeterminate growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号