首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer Targeting Gene-Viro-Therapy (CTGVT) is a promising cancer therapeutical strategy that strengthens the anti-tumour effect of oncolytic virus by expressing inserted foreign anti-tumour genes. In this work, we constructed a novel adenoviral vector controlled by the tumour-specific survivin promoter on the basis of the ZD55 vector, which is an E1B55KD gene deleted vector we previously constructed. Compared with the original ZD55 vector, this new adenoviral vector (ZD55SP/E1A) showed much better ability of replication and reporter gene expression. We then combined anti-tumour gene interleukine-24 (IL-24) with an RNA polymerase III-dependent U6 promoter driving short hairpin RNA (shRNA) that targets M-phase phosphoprotein 1 (MPHOSPH1, a newly identified oncogene) by inserting the IL-24 and the shRNA of MPHOSPH1 (shMPP1) expression cassettes into the new ZD55SP/E1A vector. Our results demonstrated excellent anti-tumour effect of ZD55SP/E1A-IL-24-shMPP1 in vitro on multiple cancer cell lines such as lung cancer, liver cancer and ovarian caner. At high multiplicity-of-infection (MOI), ZD55SP/E1A-IL-24-shMPP1 triggered post-mitotic apoptosis in cancer cells by inducing prolonged mitotic arrest; while at low MOI, senescence was induced. More importantly, ZD55SP/E1A-IL-24-shMPP1 also showed excellent anti-tumour effects in vivo on SW620 xenograft nude mice. In conclusion, our strategy of constructing an IL-24 and shMPP1 dual gene expressing oncolytic adenoviral vector, which is regulated by the survivin promoter and E1B55KD deletion, could be a promising method of cancer gene therapy.  相似文献   

2.
溶瘤腺病毒的肿瘤靶向性研究一直是一个热点。目前已有商业化的ONYX-015、H101溶瘤腺病毒。在此基础上,科学家又进一步发展形成基因-病毒治疗方案,如文中应用的ZD55-TRAIL病毒。本研究利用刘新垣实验室提供的携带TRAIL(TNF-related apoptosis-inducing ligand,TNF相关的凋亡诱导配体)的溶瘤腺病毒ZD55-TRAIL联合雷帕霉素杀伤肿瘤  相似文献   

3.
Dichloroacetate (DCA) is a metabolic modulator for the treatment of lactic acidosis and inherited mitochondrial diseases. A recent study showed that DCA treatment could induce apoptosis in many kinds of tumor cell lines via mitochondrial apoptotic pathway while sparing normal cells. ONYX-015 (dl 1520) is one of the oncolytic adenoviruses developed by the deletion of E1B-55kD gene of type 5 adenoviral DNA, and it replicates efficiently and selectively in tumor cells. ZD55-IL-24, an E1B-55kD deleted oncolytic adenovirus carrying interleukin-24 (IL-24, also called melanoma differentiation associated gene-7), had showed potent antitumor efficacy in a variety of tumor cells and exerted no apparent toxicity on normal cells. Given both the good therapeutic effect and low toxicity of these agents, here we investigated whether DCA in combination with ZD55-IL-24 or ONYX-015 could have more efficient antitumor activity in vitro experiments. Therefore, we tested the cytotoxicity of combination therapy in normal hepatic cells L-02 and QSG-7701 using the MTT assay. Our results showed that DCA combined with ONYX-015 or ZD55-IL-24 exhibited more potent antitumor activity than DCA or virus alone, and the combination treatment did not have superimposed toxicities in normal cells. Thus, a novel combination therapy associating oncolytic adenoviruses with relatively low toxic drug without severe side effects was proposed.  相似文献   

4.
Cancer targeting gene-viro-therapy (CTGVT) may prove to be an effective treatment for pancreatic cancer (PC). This study was intended to explore the anti-tumor effect of ZD55-IL-24 (oncolytic adenovirus ZD55 harboring IL-24) on PC in immune-competent mice. The expression of gene harbored by oncolytic adenovirus ZD55 in PC cells was detected by reporter-gene assays. The in vitro anti PC ability of ZD55-IL-24 was tested by MTT, crystal violet staining and apoptosis assays. The in vivo anti PC effect of ZD55-IL-24 was further observed in an immune-competent mice model by detecting anti-tumor immunity and induction of apoptosis. The expression of gene harbored by ZD55 in PC cells was significantly higher than that harbored by the replicated-deficient adenovirus, and the amount of gene expression was time-dependent and dose-dependent. Both ZD55-IL-24 and ZD55 inhibited PC cells growth, but the anti-tumor effect of ZD55-IL-24 was significantly stronger than that of ZD55, and the ability of ZD55-IL-24 in inducing PC apoptosis was significantly stronger than that of ZD55. The tumor-forming rate of group ZD55-IL-24 was the lowest, and the tumor-growing rate was also significantly lower than that of group ZD55 in immune-competent PC models. Moreover, ZD55-IL-24 mediated more anti-cancer immunity effects by induction of stronger T-lymphocytes response to PC cells, higher levels of γ-IFN and IL-6 cytokines. ZD55-IL-24-mediated CTGVT could inhibit PC growth not only by inducing oncolysis and apoptosis but enhancing the anti-cancer immune effects by inducing T cell response to PC and up-regulating γ-IFN and IL-6 cytokine in immune-competent mice. This may serve as a candidate therapeutic approach for the treatment of PC.  相似文献   

5.
目的:探讨溶瘤腺病毒(ZD55-gene)作为载体携带外源抗癌基因(XAF1)抗肝癌移植瘤的生长及其安全性。方法:抽提溶瘤腺病毒ZD55-XAF1的基因组DNA,PCR扩增鉴定病毒;细菌平板培养和支原体检测试剂盒检测细胞有无细菌、支原体污染;通过荷瘤小鼠动物实验,观察溶瘤腺病毒ZD55-XAF1对肝癌移植瘤生长的抑制、小鼠的临床反应指标、血清肝毒性指标、各脏器组织中的病毒残留分布及病理切片观察。结果:细胞培养过程无细菌和支原体污染;较对照组,受试小鼠血清肝酶AST活性上升(P0.05),而ALT和ALP活性基本无变化(P0.05);PCR检测各脏器均有病毒基因组DNA存在;HE染色显示受试小鼠各脏器具有不同程度的损伤,病毒处理对肿瘤细胞具有明显的杀伤效果,而受试小鼠的临床反应并无明显异常。结论:溶瘤腺病毒ZD55-XAF1能够抑制肿瘤生长,杀死肿瘤细胞,对小鼠血清肝酶活性影响较小而对各脏器有不同程度的轻微损伤,作为癌症基因治疗载体有潜在的应用价值但其安全性还有待提高。  相似文献   

6.
Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors‐defined serum‐free medium. A549 sphere cells displayed CSC properties, including chemo‐resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55‐EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55‐TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55‐TRAIL. In the A549 sphere cells xenograft models, ZD55‐TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs.  相似文献   

7.
Zhang ZL  Zou WG  Luo CX  Li BH  Wang JH  Sun LY  Qian QJ  Liu XY 《Cell research》2003,13(6):481-489
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of E1B 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-Viro Therapy strategy, is more efficacious than each individual component in vivo.  相似文献   

8.
The ZD55-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ZD55-interleukin (IL)-24 were constructed by inserting TRAIL or IL-24 gene separately into the oncolytic adenovirus named ZD55 (with adenovirus E1B-55kD deletion). The resulting ZD55-TRAIL and ZD55-IL-24 were used in combination to treat xenograft tumors in nude mice model. The results showed that it can not only completely eliminate BEL7404 hepatoma xenograft but also have excellent antitumor effect against gaster, lung, prostate, and breast carcinomas. It was also found that ZD55-TRAIL could not only suppress the tumor growth promoting effect by ZD55-IL-24 at lower dosage, but also substantially reduce the cancer cell viability in their combined use. This is because ZD55-IL-24 and ZD55-TRAIL could mutually enhance each other's antitumor effect greatly. All these findings conspicuously showed the synergistic antitumor effect of TRAIL and IL-24, which is also the reason for the antitumor effect by the combined use of TRAIL and IL-24 in vitro and also in vivo.  相似文献   

9.
溶瘤腺病毒能够靶向和杀死癌症干细胞,被认为是一种很有前景的抗癌药物.已有研究表明,溶瘤腺病毒ZD55能够靶向肝癌,并且表现出明显的细胞毒性效应.然而,其对肝癌干细胞是否具有同样地杀伤效力仍需进一步探讨.利用悬浮培养富集类肝癌干细胞,并验证其肝癌干细胞的特征.进一步通过MTT、结晶紫染色、Hoechst染色、Western blot和流式细胞术等检测ZD55对类肝癌干细胞的细胞存活率、凋亡诱导和病理效应等.结果发现,悬浮培养的类肝癌干细胞具有自我更新和分化能力、高表达干细胞相关转录因子(如NANOG和OCT4)、处于静息状态和具有耐药性等特性,溶瘤腺病毒处理后表现出明显的细胞毒性效应和杀伤特性,类肝癌干细胞的最低生存率仅为26.7%.ZD55能够非常明显地诱导类肝癌干细胞凋亡,其凋亡率最高达到60%.因此,ZD55可能会成为靶向肝癌干细胞的一种很有前景的治疗药物,对肝癌的临床治疗具有一定的应用价值.  相似文献   

10.
Interferon-β (IFN-β) has been widely used in cancer therapy, but the clinical trial results are generally disappointing. Our previous studies have shown that an oncolytic adenovirus carrying IFN-β (ZD55-IFN-β) exhibits significant anti-tumor activities. However, the underlying mechanisms are not clear. Here we showed that ZD55-IFN-β infection-induced S-phase cell cycle arrest in a p53-dependent manner by activating the ataxia telangiectasia mutated-dependent DNA damage pathway. In addition, ZD55-IFN-β infection could initiate both caspase-dependent apoptosis and necroptosis in cancer cells. More importantly, ZD55-IFN-β showed a synergistic effect on cancer cells when combined with doxorubicin. These results suggest that the combination of ZD55-IFN-β with doxorubicin may represent a promising clinical strategy in cancer therapy.  相似文献   

11.
12.
13.
14.
Chemoresistance and side effects are considered as the major obstacles in cisplatin-based chemotherapy of various human malignant tumors. Conjugation with cancer-specific apoptotic stimuli TRAIL or typical viro-agent ONYX-015 has been extensively investigated to enhance the antitumor activity of cisplatin. In this study, we presented a novel chemo-gene-virotherapeutic strategy to further improve the toxic effects in cancer cells and reduce the damage in normal cells. Here, an oncolytic adenoviral vector (ZD55), with a deletion of E1B 55-kDa gene, was employed to express the therapeutic TRAIL gene by constructing a recombinant virus ZD55-TRAIL. Exogenous gene delivery efficacy was determined by both in vitro and in vivo experiments and enhanced cytotoxicity of combined treatment of ZD55-TRAIL with cisplatin was evaluated in several cancer cell lines. Moreover, negative effects on normal cells have been tested in both L-02 and MRC-5 cell lines by MTT assay and apoptotic cell staining. According to our observation, combination of ZD55-TRAIL with cisplatin exhibited an apparent synergistic cytotoxicity in cancer cells, yet significantly abolished the negative toxicity in normal cells by reducing the dosage. Thus, a novel chemo-gene-virotherapeutic strategy for cancer therapy was proposed.  相似文献   

15.
16.
Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth.  相似文献   

17.
杂合启动子HREAF的构建及其肝癌特异性分析   总被引:2,自引:1,他引:1  
本研究将在几乎所有肝癌细胞中均有高特异性的杂合启动子HREAF用于构建肝癌特异性溶瘤腺病毒。根据献报道的缺氧应答元件(HRE)和人甲胎蛋白(AFP)核心启动子(AF0.3)基因序列,设计并合成2对引物,采用PCR方法从肝癌细胞基因组DNA中扩增获得大小分别约为560bp的HRE DNA片段和310bp的AF0.3DNA片段,连接到pGEM—T Easy载体进行测序,证明获得了HRE和AF0.3的基因片段。将HRE和AF0.3的PCR产物分别进行PstI和SspI酶切并末端补平后直接连接,将此约700bp的连接产物克隆到pGEM—T Easy载体进行测序,证明杂合启动子HREAF构建成功。将HREAF亚克隆至腺病毒穿梭载体pShuttle并在其后克隆入受其调控的腺病毒早期基因E1,构建成肝癌特异性溶瘤腺病毒穿梭载体pShuttle—HREAF—E1,经PCR及酶切鉴定。将pShuttle—HREAF—E1转染肺癌细胞株及AFP产量不等的不同人肝癌细胞株,经Ela的RT—PCR检测证实杂合启动子HREAF可调控目的基因在AFP产量不等的不同人肝癌细胞系中特异性高表达。杂合启动子HREAF及腺病毒穿梭载体pShuttle—HREAF—E1的构建为进一步研制肝癌特异性重组溶瘤腺病毒及其体内外肝癌特异杀伤作用的研究打下了基础。  相似文献   

18.
Targeting gene-virotherapy of cancer   总被引:15,自引:0,他引:15  
Liu XY  Gu JF 《Cell research》2006,16(1):25-30
Our purpose is to completely elimination of xenograft tumor in animal tumor model in order to work out a protocal for the cure of patient. Gene therapy and viral therapy for cancer have got some therapeutic effects, but both have no great breakthrough. Therefore, we worked out a new strategy called Targeting Gene-Virotherapy of Cancer which is a combination of the advantage of gene therapy and virotherapy. This new strategy has stronger antitumor effect than either of them alone. A tumor specific replicative adenovirus vector ZD55 (E1B 55KD deleted Adv.) which is similar to ONYX-015 in targeting fuction but significant different in construction was produced and various single therapeutic gene was inserted into ZD55. Now such a conception as Targeting Gene-Virotherapy of Cancer was raised and systemically studied before, although there are some works on ONYX-015-tk, -cd or cd/-tk etc. separately. The antitumor effect of ZD55-Gene (for example IL-24 gene) is much better than ZD55 (virotherapy) alone and hundred fold high than that of Ad-IL-24 (gene therapy) alone. ZD55-IL-24 was in preclinal studying in the ZD55-IL-24 therapy, completely elimination of tumor mass was occurred in some mice but not in all mice, that means one gene was not effictive enough to eliminate all the tumor mass in all mice. Therefore two genes with compensative or synergetic effect were inserted into ZD55 separately and used in combination. This strategy was called Targeting Dual Gene-Virotherapy of Cancer (with PCT patent). Then much better results were obtained and all the xenograft tumor masses were completely eliminated in all mice, if two suitable genes were chosen. On the basis of the initiation of two gene results, it was thought about that using two tumors promoter to control the virus vector will be better for the targeting effect and the safty of the drugs. Then double tumor controlled virus vector harboring two genes for cancer therapy was worked out. Better results have been obtained and another patent has been applied. This antitumor strategy could be used to kill all the tumor cells completely in all mice with minimum damage to normal cells.  相似文献   

19.
Genes that have been designated the name "MUC" code for proteins comprising mucin domains. These proteins may be involved in barrier and protective functions. The first such gene to be characterized and sequenced is the MUC1 gene. Here we report a novel small protein derived from the MUC1 gene by alternative splicing that does not contain the hallmark of mucin proteins, the mucin domain. This protein termed MUC1/ZD retains the same N-terminal MUC1 sequences as all of the other known MUC1 protein isoforms. The common N-terminal sequences comprise the signal peptide and a subsequent stretch of 30 amino acids. In contrast, the MUC1/ZD C-terminal 43 amino acids are novel and result from a reading frameshift engendered by a splicing event that forms MUC1/ZD. The expression of MUC1/ZD at the protein level in human tissues is demonstrated by Western blotting, immunohistochemistry, immunoprecipitation, and an ELISA. Utilization was made of affinity-purified MUC1/ZD-specific polyclonal antibodies as well as two different monoclonal antibodies that are monospecific for the MUC1/ZD protein. The MUC1/ZD protein is expressed in tissues as an oligomeric complex composed of monomers linked by disulfide bonds contributed by MUC1/ZD cysteine residues. MUC1/ZD protein expression did not parallel that of the tandem-repeat array-containing MUC1 protein. Results presented here demonstrate for the first time the expression of a novel MUC1 protein isoform MUC1/ZD, which is generated by an alternative splicing event that both deletes the tandem-repeat array and leads to a C-terminal reading frameshift.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号