首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
作为三大主要营养物质之一,膳食脂肪为人体提供能量和营养。膳食脂肪摄入不当会破坏肠道微生物的稳态,影响宿主的代谢状况,增加慢性疾病发生的风险。建立疾病动物模型是研究肠道微生物与宿主健康的重要手段。文中综述了膳食脂质的数量和种类、肠道微生物和宿主代谢之间的相互作用及其可能的作用机制,阐述了基于不同的疾病动物模型,膳食脂质影响肠道微生物的结构和功能,以及对宿主代谢的调节,为深入了解膳食脂质、肠道微生态和宿主健康三者之间的关系提供了依据。  相似文献   

2.
3.
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC-MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)-AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.  相似文献   

4.
熊智  王连荣  陈实 《微生物学报》2018,58(11):1916-1925
高通量测序技术已经增加了人们对肠道微生物组和表观遗传学修饰的理解,将肠道微生物组和宿主表观遗传学修饰紧密联系起来,阐明了很多疾病的发生过程如免疫、代谢、心血管疾病甚至是癌症。肠道微生物组与宿主具有相互作用,与人体密不可分,相辅相成。肠道微生物组的生态失调可能诱导疾病的发生并能调控宿主表观遗传学修饰。宿主表观遗传学调控和肠道微生物组(或其代谢产物)变化的相互关系在很多疾病中都有报道。因此,肠道微生物组可作为某些疾病的诊断标记,健康肠道微生物组的移植会逆转这种微生态失调,可作为一种有效的治疗策略。本文主要探讨了肠道微生物组直接调控宿主表观修饰和通过小分子生物活性物质和其他酶辅因子间接影响表观修饰,以及基于肠道微生物组调控宿主表观修饰的诊断和治疗应用等。  相似文献   

5.
In the past decade, studies on the mammalian gut microbiome have revealed that different animal species have distinct gut microbial compositions. The functional ramifications of this variation in microbial composition remain unclear: do these taxonomic differences indicate microbial adaptations to host-specific functionality, or are these diverse microbial communities essentially functionally redundant, as has been indicated by previous metagenomics studies? Here, we examine the metabolic content of mammalian gut microbiomes as a direct window into ecosystem function, using an untargeted metabolomics platform to analyze 101 fecal samples from a range of 25 exotic mammalian species in collaboration with a zoological center. We find that mammalian metabolomes are chemically diverse and strongly linked to microbiome composition, and that metabolome composition is further correlated to the phylogeny of the mammalian host. Specific metabolites enriched in different animal species included modified and degraded host and dietary compounds such as bile acids and triterpenoids, as well as fermentation products such as lactate and short-chain fatty acids. Our results suggest that differences in microbial taxonomic composition are indeed translated to host-specific metabolism, indicating that taxonomically distant microbiomes are more functionally diverse than redundant.Subject terms: Metabolomics, Microbiome, Microbial ecology  相似文献   

6.
The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ‐free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short‐chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top‐down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino‐acid metabolism, methylamines and SCFAs. The novel application of hierarchical‐principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top‐down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics.  相似文献   

7.
《Cell metabolism》2022,34(12):1947-1959.e5
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

8.
Delineating differences in gut microbiomes of human and animal hosts contributes towards understanding human health and enables new strategies for detecting reservoirs of waterborne human pathogens. We focused upon Blautia, a single microbial genus that is important for nutrient assimilation as preliminary work suggested host-related patterns within members of this genus. In our dataset of 57 M sequence reads of the V6 region of the 16S ribosomal RNA gene in samples collected from seven host species, we identified 200 high-resolution taxonomic units within Blautia using oligotyping. Our analysis revealed 13 host-specific oligotypes that occurred exclusively in fecal samples of humans (three oligotypes), swine (six oligotypes), cows (one oligotype), deer (one oligotype), or chickens (two oligotypes). We identified an additional 171 oligotypes that exhibited differential abundance patterns among all the host species. Blautia oligotypes in the human population obtained from sewage and fecal samples displayed remarkable continuity. Oligotypes from only 10 Brazilian human fecal samples collected from individuals in a rural village encompassed 97% of all Blautia oligotypes found in a Brazilian sewage sample from a city of three million people. Further, 75% of the oligotypes in Brazilian human fecal samples matched those in US sewage samples, implying that a universal set of Blautia strains may be shared among culturally and geographically distinct human populations. Such strains can serve as universal markers to assess human fecal contamination in environmental samples. Our results indicate that host-specificity and host-preference patterns of organisms within this genus are driven by host physiology more than dietary habits.  相似文献   

9.
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic dis-eases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary fac-tors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut micro-biome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advan-ces in improving metabolic diseases by regulating the gut microbiome will be discussed.  相似文献   

10.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

11.

Background

There are growing evidences showing that gut microbiota should play an important role in host appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain unknown.

Results

In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding behavior records for a continuous period of 30–100?kg. We first analyzed the influences of host gender and genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group. Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had significantly different enrichment between pigs with high and low ADFI.

Conclusions

The present study provided important information on the profound effect of gut microbiota on porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating the gut microbiome in the pig industry.
  相似文献   

12.
Abundant microorganisms that inhabit the human intestine are implicated in health and disease. The gut microbiome has been studied with metagenomic tools, and over 3 million genes have been discovered, constituting a 'parts list' of this ecosystem; further understanding requires studies of the interacting parts. Mouse models have provided a glimpse into the microbiota and host interactions at metabolic and immunologic levels; however, to provide more insight, there is a need to generate mathematical models that can reveal genotype-phenotype relationships and provide scaffolds for integrated analyses. To this end, we propose the use of genome-scale metabolic models that have successfully been used in studying interactions between human hosts and microbes, as well as microbes in isolation and in communities.  相似文献   

13.
14.
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ‐free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well‐defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co‐metabolic products such as hippurate (urine) and 5‐aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo‐inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health‐care investigations.  相似文献   

15.
To what extent do host genetics control the composition of the gut microbiome? Studies comparing the gut microbiota in human twins and across inbred mouse lines have yielded inconsistent answers to this question. However, candidate gene approaches, in which one gene is deleted or added to a model host organism, show that a single host gene can have a tremendous effect on the diversity and population structure of the gut microbiota. Now, quantitative genetics is emerging as a highly promising approach that can be used to better understand the overall architecture of host genetic influence on the microbiota, and to discover additional host genes controlling microbial diversity in the gut. In this Review, we describe how host genetics and the environment shape the microbiota, and how these three factors may interact in the context of chronic disease.  相似文献   

16.
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.  相似文献   

17.
《Cell reports》2023,42(5):112299
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   

18.
《Cell》2023,186(13):2839-2852.e21
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

19.
Despite careful attention to animal nutrition and wellbeing, gastrointestinal distress remains relatively common in captive non‐human primates (NHPs), particularly dietary specialists such as folivores. These patterns may be a result of marked dietary differences between captive and wild settings and associated impacts on the gut microbiome. However, given that most existing studies target NHP dietary specialists, it is unclear if captive environments have distinct impacts on the gut microbiome of NHPs with different dietary niches. To begin to examine this question, we used 16S ribosomal RNA gene amplicon sequences to compare the gut microbiomes of five NHP genera categorized either as folivores (Alouatta, Colobus) or non‐folivores (Cercopithecus, Gorilla, Pan) sampled both in captivity and in the wild. Though captivity affected the gut microbiomes of all NHPs in this study, the effects were largest in folivorous NHPs. Shifts in gut microbial diversity and in the relative abundances of fiber‐degrading microbial taxa suggest that these findings are driven by marked dietary shifts for folivorous NHPs in captive settings. We propose that zoos and other captive care institutions consider including more natural browse in folivorous NHP diets and regularly bank fecal samples to further explore the relationship between NHP diet, the gut microbiome, and health outcomes.  相似文献   

20.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号