首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant challenge to population genetic studies of the dengue vector, Aedes aegypti, has been the lack of polymorphic microsatellite loci. In an effort to develop useful markers, we evaluated the genetic variation at 17 microsatellite loci identified in the A. aegypti genome. Nine loci with at least five alleles were identified in field‐collected specimens from Thailand. An additional two loci carried five alleles if samples from an A. aegypti laboratory colony were included. Our results greatly increase the number of highly variable markers available for the study of the genetics and the population structure of this medically important species.  相似文献   

2.
Although host immunity offers the obvious benefit of reducing parasite infection, it is often traded-off with other fitness components. We investigated whether the cost of an immune response in the yellow fever mosquito, Aedes aegypti, is modulated by the antigen that activates the melanization immune response. Thus, one of three different novel antigens were injected into the mosquito's thorax--either a glass bead, a negatively charged (C-25) Sephadex bead, or a neutral (G-25) Sephadex bead--and fecundity and bead melanization were observed. Glass beads are immunologically inert and were therefore used as an inoculation control. The fecundity of mosquitoes inoculated with these beads did not differ from the fecundity of mosquitoes that did not melanize negatively charged or neutral beads. The ability of A. aegypti to melanize negatively charged Sephadex beads was associated with reduced fecundity, showing a clear cost of immunity. In contrast, melanization of the neutral beads was quite strong but had no effect on fecundity. Thus, the cost of what appeared to be the same immune response--melanization of a bead--depended on the type of bead that stimulated the immune system. Such differences might help to explain variation of immune efficacy against different parasites in natural populations.  相似文献   

3.
To investigate feeding‐related decisions in Aedes aegypti (L.), adults are presented with simple diets of paired gustatory stimuli conveying information concerning energy content, nutrient richness, osmotic balance and food toxicity in a two‐diet matrix assay. Assessment of mosquito gut contents indicates that both sexes accept single sugar diets in a dose‐dependent manner. When presented with a choice between two different yet equimolar sugar solutions, more individuals of both sexes accept the disaccharides, sucrose and trehalose, than the monosacharrides, fructose and glucose. The combination of pyranose and furanose sugars in solution, either physically associated (as in sucrose) or present as monomers (as glucose and fructose), is accepted over solutions containing a single sugar moiety. Using the two‐diet matrix assay, mosquito diet‐choice is also tested between two equimolar sucrose ‘driver’ solutions in which one is presented with various concentrations of another potential feeding cue ‘test’ compound (i.e. each of the 20 naturally‐occurring amino acids, sodium chloride, quinine or caffeine). Diet‐choice between the ‘driver’ sucrose‐only solution and the solution of the ‘driver’ sucrose containing a ‘test’ amino acid is influenced by sex, amino acid concentration and sucrose concentration. There is also an example of synergism between the diet components, leucine and sucrose. Mosquitoes demonstrate a dose‐dependent acceptance of sucrose‐only diets over sodium chloride‐containing sucrose when presented together. Interestingly, the sucrose‐only diet is accepted by more mosquitoes than all concentrations of the saline‐containing sucrose diets except those approximately isotonic to mosquito haemolymph, at which concentration mosquitoes show no clear choice between the diets. More individuals of both sexes accept sucrose‐only diets than the diets of caffeine‐containing sucrose in a dose‐dependent manner. Only females, however, respond to quinine‐containing sucrose diets and modulate this behaviour in relation to the energetic reward: more females imbibed quinine‐containing sucrose at the higher sucrose concentration (1 m ). A systematic characterization of diet selection behaviour of A. aegypti is presented for 27 putative feeding cues potentially involved in nectar/honeydew feeding. This study will be used as a basis from which to investigate further the mosquito's assessment of food quality and ultimately host choice.  相似文献   

4.
Population genetic studies of insect vectors can generate knowledge to improve epidemiological studies focused on the decrease of pathogen transmission. In this study, we used nine SNPs across the Aedes aegypti genome to characterize seasonal population variations of this important dengue vector. Mosquito samples were obtained by ovitraps placed over Botucatu SP from 2005 to 2010. Our data show that, regardless of the large variation in mosquito abundance (deduced from the number of eggs obtained from ovitraps), the effective population size remained stable over the years. These results suggest that Ae. aegypti is able to maintain a sufficiently large active breeding population during the dry season to keep genetic frequencies stable. These results open new perspectives on mosquito survey and control methods.  相似文献   

5.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

6.
7.
8.
The effects of dietary sugar and body size on the oviposition of Ae. aegypti were studied under laboratory conditions. In female mosquitoes provided with sugar, the start of maximum fecundity was significantly delayed and the oviposition period was longer than in females provided with water. The peak of oviposition was also delayed in sugar‐fed females. Large females oviposited more eggs per day than small females at maximum fecundity and during eight days of observations. Large females also visited significantly more water‐containing cups in their cages per day than small females at maximum fecundity. During the eight days of observations, large females and sugar‐fed females visited more water‐containing cups in their cages than water‐fed small females. Both large females and sugar‐fed females oviposited their eggs at sites higher above the water line than water‐fed small females. These results suggested that large and sugar‐fed female Ae. aegypti mosquitoes had more energy reserves and oviposited their eggs at higher sites, which would lead to a time lag in hatching.  相似文献   

9.
The larvae and adults of Aedes aegypti were tested for the potential to develop resistance to the synthetic pyrethroid, deltamethrin, alone or a combination of deltamethrin with the synergist, piperonyl butoxide (PBO). Although continuous larval selection for 40 generations resulted in 703-fold resistance, the resistance ratio in the adults was only 1.3. Similarly, adult selections with deltamethrin showed a resistance ratio of less than four after 40 generations, indicating differential response to deltamethrin selection in the two developmental stages of the insect. When the susceptible larvae were subjected to selection pressure of deltamethrin and PBO in the ratio of 1:5 for 20 generations, the speed of selection for deltamethrin resistance slowed down by 60%. The F24 larvae obtained from the strain selected with deltamethrin alone were further subjected to selection pressure with synergized deltamethrin, which resulted in 89% reversal in deltamethrin resistance in just one generation. However, long-term selection with the insecticide-synergist combination returned resistance close to original levels in 15 generations. The data indicate the involvement of cytochrome P450-dependent detoxification as the primary mechanism of development of resistance to deltamethrin in the larvae. Implications of the results on the management of larval and adult stages of Ae. aegypti are discussed.  相似文献   

10.
Aedes aegypti is among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.  相似文献   

11.
The relative involvement of larval dietary tolerance to the leaf-litter toxic polyphenols in shaping population genetic structure of the subalpine mosquito Aedes rusticus was examined. This was compared with other parameters such as geographical range, type of vegetation surrounding the breeding site, and occurrence of annual larvicidal treatments. Population genetic structure was analysed at 10 presumed neutral polymorphic isoenzyme loci. Toxicological comparisons involved standard bioassays performed on larvae fed on toxic decomposed leaf litter. Significant overall genetic differentiation was observed among the 22 studied populations and within the five defined geographical groups. Analysis of molecular variance revealed an absence of relation between genetic and environmental parameters, genetic variance being essentially found within populations. This suggested that the larval dietary tolerance to the toxic leaf litter and the other studied parameters poorly influence population genetic structure. The local adaptation of subalpine mosquito populations to the surrounding vegetation thus appears as a labile trait. Such a dynamic adaptation is also suggested by the correlation between geographical and toxicological distances and the correlation between dietary tolerance to the leaf-litter toxic polyphenols and annual larvicidal treatments.  相似文献   

12.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

13.
A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus.  相似文献   

14.
The monoicous peatmoss Sphagnum subnitens has a tripartite distribution that includes disjunct population systems in Europe (including the Azores), northwestern North America and New Zealand. Regional genetic diversity was highest in European S. subnitens but in northwestern North America, a single microsatellite‐based multilocus haploid genotype was detected across 16 sites ranging from Coos County, Oregon, to Kavalga Island in the Western Aleutians (a distance of some 4115 km). Two multilocus haploid genotypes were detected across 14 sites on South Island, New Zealand. The microsatellite‐based regional genetic diversity detected in New Zealand and North American S. subnitens is the lowest reported for any Sphagnum. The low genetic diversity detected in both of these regions most likely resulted from a founder event associated with vegetative propagation and complete selfing, with one founding haploid plant in northwest North America and two in New Zealand. Thus, one plant appears to have contributed 100% of the gene pool for the population systems of S. subnitens occurring in northwest North America, and this is arguably the most genetically uniform group of plants having a widespread distribution yet detected. Although having a distribution spanning 12.5° of latitude and 56° of longitude, there was no evidence of any genetic diversification in S. subnitens in northwest North America. No genetic structure was detected among the three regions, and it appears that European plants of S. subnitens provided the source for New Zealand and northwest North American populations.  相似文献   

15.
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (F(ST) = 0.704) and the introduced (F(ST) = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.  相似文献   

16.
Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty‐four isolates of P. tabacina from the United States, Central America–Caribbean–Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. populations. Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation‐with‐migration analysis (IM) supported the hypothesis of long‐distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high‐evolutionary‐risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.  相似文献   

17.
Invasions by exotic organisms have had devastating affects on aquatic ecosystems, both ecologically and economically. One striking example of a successful invader that has dramatically affected fish community structure in freshwater lakes of North America is the sea lamprey (Petromyzon marinus). We used eight microsatellite loci and multiple analytical techniques to examine competing hypotheses concerning the origins and colonization history of sea lamprey (n = 741). Analyses were based on replicated invasive populations from Lakes Erie, Huron, Michigan, and Superior, populations of unknown origins from Lakes Ontario, Champlain, and Cayuga, and populations of anadromous putative progenitor populations in North America and Europe. Populations in recently colonized lakes were each established by few colonists through a series of genetic bottlenecks which resulted in lower allelic diversity in more recently established populations. The spatial genetic structure of invasive populations differed from that of native populations on the Atlantic coast, reflecting founder events and connectivity of invaded habitats. Anadromous populations were found to be panmictic (theta(P) = 0.002; 95% CI = -0.003-0.006; P > 0.05). In contrast, there was significant genetic differentiation between populations in the lower and upper Great Lakes (theta(P) = 0.007; P < 0.05; 95% CI = 0.003-0.009). Populations in Lakes Ontario, Champlain, and Cayuga are native. Alternative models that describe different routes and timing of colonization of freshwater habitats were examined using coalescent-based analyses, and demonstrated that populations likely originated from natural migrations via the St Lawrence River.  相似文献   

18.
A synthetic mixture of an oviposition‐stimulating kairomone for the yellow fever mosquito, Aedes aegypti, comprising of 83% tetradecanoic acid, 16% nonanoic acid and 1% tetradecanoic acid methyl ester (NTT, in short) was tested in a dengue endemic area in Recife, Brazil. Gravid female mosquitoes confined to a cage under semi‐field conditions deposited significantly higher numbers of eggs in traps baited with NTT at doses ranging from 0.6 to 600 ng/μl than in control (water) traps. When tested in homes, egg‐laying in traps baited with 60 ng NTT/μl (final concentration in trap, ≈3.33 ng/ml) and in control traps was not significantly different, but egg deposited in traps with lower dosage (6 ng NTT/μl; final concentration in trap, ≈0.33 ng/ml) was significantly higher than in control traps. In subsequent trials, the numbers of eggs laid in traps baited with 0.6 ng NTT/μl (final concentration in trap, ≈0.033 ng/ml) were not significantly different from the numbers deposited in trap loaded with 6 ng NTT/μl. Egg‐laying was significantly higher in these treatments than in control traps.  相似文献   

19.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

20.
Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north–south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号