首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-alpha-aminocaprolactam hydrolase possessing the L-lysinamidase activity was isolated and purified from Providencia alcalifaciens. The purification procedure of enzymes included cell destruction on USDL-1, fractionation by ammonium sulfate, gel-chromatography on G-100, ion exchange chromatography on DEAE-cellulose. The purification resulted in a homogeneous enzyme which possessed the both activities. The enzyme molecular weight (180 kDa) was estimated by gel chromatography on Sephadex G-200. Km was 3.5 mM in the phosphate buffer (pH 7.2). L-alpha-aminocaprolactam hydrolase and L-lysinamidase may be related to metal-dependent enzymes requiring Mg++.  相似文献   

2.
An l-amino amidase from Mycobacterium neoaurum ATCC 25795 responsible for the enantioselective resolution of dl-alpha-methyl valine amide was purified and characterized. The purification procedure included ammonium sulfate fractionation, gel filtration, and anion-exchange chromatography, which resulted in a homogeneous preparation of the enzyme with a native molecular mass of 136 kDa and a subunit molecular mass of 40 kDa. The purified enzyme displayed the highest activity at 50 degrees C and at pH 8.0 and 9.5. The enzyme was strongly inhibited by the metal-chelating agent 1,10-phenanthroline, the disulfide-reducing agent dithiothreitol, and the cysteine proteinase inhibitor iodoacetamide. The purified amino amidase showed a unique l-enantioselective activity towards a broad range of both alpha-H- and alpha-alkyl-substituted amino acid amides, with the highest activity towards the cyclic amino acid amide dl-proline amide. No activity was measured with dl-mandelic acid amide nor with the dipeptide l-phenylalanine-l-leucine. The highest catalytic efficiency (k(cat)/K(m) ratio) was measured with dl-alpha-allyl alanine amide, dl-alpha-methyl phenylalanine amide, and dl-alpha-methyl leucine amide.  相似文献   

3.
The coupling of the thermostable acid protease (EC 3.4.23.-) of Penicillium duponti K 1014 to ethylene-maleic acid (1 : 1) linear copolymer in the presence of 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide at pH 3.0, afforded a soluble enzyme derivative with a protein incorporation yield of 67% under optimal conditions. The protein content of the enzyme-polymer complex, the molecular weights of the reactants, and the mean value of 2.2 lysine residues per mol of enzyme found in amide linkage to the matrix, support a structure consisting of two polymer chains per mol of protease, each chain acylating a single lysine residue of the enzyme. The isoelectric point of the coupled enzyme was found to be 3,47, a value lower than that measured on the free protease (3.81). The specific activity of the bound protease against casein, at pH 3.7 and 30 degrees C, was 34% of that of the free enzyme, and at 75 degrees C increased to 70%. The increased size of the coupled enzyme resulted in an improved retention of activity by ultrafiltration membranes over that observed with free protease, alone or in admixture with ethylene-maleic acid copolymer. A water-soluble, coupled pepsin was prepared in 43% yield on protein basis by using the aminoethylmonoamide of ethylene-maleic acid copolymer and the same water-soluble carbodiimide.  相似文献   

4.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

5.
Sequential processing reactions in the formation of hormone amides   总被引:1,自引:0,他引:1  
The substrate specificity of an enzyme with amidating activity, present in porcine pituitary, was investigated by examining its ability to convert the synthetic peptides D-Tyr-Val-Gly and D-Tyr-Val-Gly-Lys-Arg to the dipeptide amide D-Tyr-Val-CONH2. The purified enzyme catalysed the amidation reaction with the tripeptide but did not accept the pentapeptide as a substrate. With the mixture of enzymes present in a membrane fraction from porcine pituitary or the enzymes in a secretory granule fraction, both the tripeptide and pentapeptide substrates gave rise to D-Tyr-Val amide; the formation of dipeptide amide from the pentapeptide, however, involved a latency period after which amidation occurred at a similar rate with the two substrates. Evidence was obtained that arginine and lysine were released from the C terminus of the pentapeptide before amidation took place since the rate of formation of dipeptide amide was reduced at pH values that were compatible with amidation but unfavourable to the action of carboxypeptidase H. In addition formation of the dipeptide amide from the pentapeptide was blocked by guanidinoethylmercaptosuccinic acid and glycylarginine, which are inhibitors of carboxypeptidase enzymes. The experiments demonstrate that removal of basic residues from the C terminus of a peptide and amidation at C-terminal glycine are reactions that take place consecutively. These prohormone-processing reactions, which are intrinsic to the formation of hormone amides, did not synergise.  相似文献   

6.
Trypsin PC from the hepatopancreas of the king crab Paralithodes camtschatica was isolated and purified to apparent homogeneity by ion-exchange chromatography on Aminosilochrom and DEAE-Sephadex and affinity chromatography on arginine-agarose. The yield of the enzyme was 37.7%, and the purification degree was 21. Trypsin PC has a molecular mass of 29 kDa and pI < 2.5. It hydrolysis N-benzoyl-L-arginine p-nitroanilide at the optimum pH of 7.5-8.0 and at the temperature optimum of 55 degrees C (K(m) = 0.05 mM). Trypsin PC retained its activity within the pH range of 5.8-9.0 in the presence of Ca2+. The enzyme was inhibited by the specific inhibitors of serine proteases diisopropyl fluorophoshate and phenylmethylsulfonyl fluoride, by the trypsin inhibitor N-tosyl-L-lysylchloromethylketone, and by the trypsin inhibitors from soybean and potato. Trypsin PC was found to hydrolyze amide bonds formed by carboxylic groups of lysine and arginine in peptide substrates. The N-terminal sequence of this enzyme is IVGGTEVTPG.  相似文献   

7.
Acetamidination of pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with ethyl acetimidate resulted in an increase of thermostability, and covalent bridge formation between pairs of lysine residues is observed. Guanidination with O-methylisourea of the enzyme also increases the thermostability, but such a bridge seems not to be formed. Increased thermostability of guanidinated enzyme is considered to be due to the shift of the pK values of the lysine residues from 10.5 to 12.5 after guanidination. Modification experiments with carbodiimide reveals that the enzyme contains 4.6 pairs of neighboring lysine and carboxyl residues per subunit, and amide bonding between 3.2 pairs results in an increase of thermostability. Guanidination of 4.6 Lys/subunit of the enzyme yields an enzyme derivative with considerably increased thermostability. Salt bridge formation between the 4.6 pairs of neighboring carboxyl and guanidinated lysine residues per subunit might make a major contribution to the increased thermostability of the guanidinated enzyme.  相似文献   

8.
A lysine aminopeptidase was purified from the yeast Kluyveromyces marxianus. This enzyme was purified 100-fold from a soluble extract obtained at 100,000g. The purification procedure consisted in fractionated precipitation with ammonium sulfate and five chromatography steps. The native enzyme had a molecular mass of 46 kDa assessed through gel filtration. This aminopeptidase depicted an optimal pH of 7.0 and was stable at a pH range of 4-8, its optimal temperature was 45 degrees C and the enzyme became unstable at temperatures above 55 degrees C. The isoelectric point of the purified enzyme was 4.4. Michaelis constant and Vmax for L-lysine-p-nitroanilide were 0.33 mM and 2.2 mM min(-1) per milligram of protein, respectively. The enzyme was strongly inhibited by bestatin, o-phenanthroline and, to a lesser extent, by EDTA, suggesting that this enzyme is a metalloprotease. Our results suggest that the lysine aminopeptidase from Kluyveromyces marxianus might be of biotechnological relevance.  相似文献   

9.
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.  相似文献   

10.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibrium-ordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.  相似文献   

11.
Oligo-tyrosine peptides such as Tyr-Tyr having angiotensin I-converting enzyme (ACE) inhibitory activity could be synthesized by α-chymotrypsin-catalyzed reaction with l-tyrosine ethyl ester in aqueous media. However, peptide yield in the reaction was below 10%. Since l-tyrosine amide showed highly nucleophilic activity for the deacylation of enzyme through which a new peptide bond was made, its application to the enzymatic peptide synthesis was evaluated in this study. Addition of tyrosine amide into the reaction produced Tyr-Tyr-NH2, of which yield exceeded 130% on the basis of tyrosine ethyl ester. Although purified Tyr-Tyr-NH2 did not inhibit ACE activity, α-chymotrypsin could act on the dipeptide amide and convert about 40% of it to Tyr-Tyr. The use of both ester and amide forms of tyrosine is expected to be a potent procedure for α-chymotrypsin-catalyzed synthesis of antihypertensive peptides.  相似文献   

12.
An easy and rapid method for the purification of a bacteriolytic endopeptidase produced by Myxococcus virescens is described. The bacteria were grown in casitone media and the cells were sedimented by centrifugation. About 1.2 g of montmorillonite were added per liter of cell-free culture solution. The clay was sedimented by centrifugation and the enzyme was then eluted by 0.05 M Na-phosphate buffer pH 6.0, containing 0.4 M NaCl. The enzyme was diluted with water and chromatographed on carboxymethyl-cellulose columns. The purified enzyme liberated free amino groups but no reducing sugars or N-acetylhexosamines when acting on purified N-acetylated cell walls of Micrococcus lysodeikticus. Analysis of N- and C-terminal amino acids in the digestion products showed that the enzyme had liberated about 110 nmoles of lysine ε-amino groups and 60 nmoles of alanine carboxyl groups per mg of cell wall. When it acted on a bisdisaccharide pentapeptide dimer isolated from M. lysodeikticus cell walls, it cleaved about 30% of the alanyl-lysine linkages. Consequently the enzyme was an alanyl-lysine endopeptidase. It had no muramyl-alanine amidase activity.  相似文献   

13.
Synthesis and application of the first fluorogenic substrate, N-carbobenzoxyglycylprolyl-4-methylcoumarinyl amide (Z-Gly-Pro-MeCouNH) for the determination of the post-proline cleaving enzyme (EC 3.4.21.-) were reported. Maximal activity of the enzyme purified from lamb kidney for the new substrate was observed at pH 7.0. This substrate showed a higher affinity (Km = 0.02 mM) for the enzyme than the proline containing substrates studied previously and allowed the detection of 10-50 ng post-proline cleaving enzyme activity per ml sample after a 1 min incubation period. Distribution of post-proline cleaving enzyme and other proline specific peptidases in rat tissues was studied using Z-Gly-Pro-MeCouNH and other proline-containing substrates. High post-proline cleaving enzyme activity was observed in testis, liver and skeletal muscle. Inhibition experiments indicated that post-proline cleaving enzyme activity was completely inactivated by 0.1 mM diisopropylphosphofluoridate and Z-Gly-Pro-chloromethylketone, as had been found in the case of the enzyme isolated from lamb kidney. Activity in human body fluids was also tested for levels of post-proline cleaving enzyme activity using Z-Gly-Pro-MeCouNH and semen was found to show the highest cleaving activity.  相似文献   

14.
Specific modification of 4.4 lysine residues per molecule of formate dehydrogenase, from the methylotrophic bacterium Achromobacter parvulus I by pyridoxal, results in complete inactivation of the enzyme. The concentration effect of the modifying agent and substrates on the inactivation of formate dehydrogenase has been studied. Coenzymes do not protect the enzyme from inactivation. Complete maintenance of enzyme activity was achieved in the presence of saturating concentrations of the formate and upon formation of the ternary complex, enzyme-NAD-azide. Formate specifically protects two lysine residues per dimer molecule of the enzyme from modification. The presence of one essential lysine residue in the substrate-binding region of the enzyme active site is assumed.  相似文献   

15.
A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site.  相似文献   

16.
Recombinant mouse leukotriene A4 hydrolase was expressed in Escherichia coli as a fusion protein with ten additional amino acids at the amino terminus and was purified to apparent homogeneity by means of precipitation, anion exchange, hydrophobic interaction and chromatofocusing chromatographies. By atomic absorption spectrometry, the enzyme was shown to contain one mol of zinc/mol of enzyme. Apparent kinetic constants (Km and Vmax) for the conversion of leukotriene A4 to leukotriene B4 (at 0 degree C, pH 8) were 5 microM and 900 nmol/mg per min, respectively. The purified enzyme also exhibited significant peptidase activity towards the synthetic amide alanine-4-nitroanilide. Km and Vmax for this reaction (at 37 degrees C, pH 8) were 680 microM and 365 nmol/mg per min, respectively. Apo-leukotriene A4 hydrolase, prepared by treating the enzyme with 1,10-phenanthroline, was virtually inactive with respect to both enzymatic activities, but could be reactivated by addition of stoichiometric amounts of zinc or cobalt. Exposure of the enzyme to leukotriene A4 resulted in a dose-dependent inactivation of both enzyme activities.  相似文献   

17.
The alpha-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) of Trichosporon adeninovorans, an enzyme of lysine biosynthesis, was partially purified, some properties of the enzyme were studied and a novel regulatory pattern was found. The Km values of the enzyme were estimated to be 0.78 mM for alpha-aminoadipate, 1.0 mM for ATP, 0.23 mM for NADPH and 0.77 mM for MgCl2. It is demonstrated that the enzyme can be regulated by lysine and lysine analogues. L-Lysine (Ki of 0.09 mM), S-(beta-aminoethyl)-L-cysteine (Ki of 0.007 mM) and delta-hydroxylysine (Ki of 1.65 mM) inhibited the enzyme activity. The inhibition was competitive with respect to alpha-aminoadipate and non-competitive with respect to both ATP and NADPH.  相似文献   

18.
Pigeon liver fatty acid synthetase was inactivated irreversibly by 2,4,6-trinitrobenzenesulphonic acid (TNBS). Biphasic inactivation of the enzyme was observed with the inhibitor. NADPH provided protection to the enzyme against inactivation by TNBS and the extent of protection increased with NADPH concentration indicating that the essential lysine residues are present at the NADPH binding site. The stoichiometric results with TNBS showed that 4 mol of lysine residues are modified per mole of fatty acid synthetase upon complete inactivation. The rapid reaction of two amino groups per enzyme molecule led to the loss of 60% of the enzyme activity. These approaches suggested that two lysine residues present at the active site are essential for the enzymatic activity of fatty acid synthetase.  相似文献   

19.
An NADPH-dependent alpha-keto amide reductase was purified from Saccharomyces cerevisiae. The molecular mass of the native enzyme was estimated to be 33 and 36 kDa by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The purified enzyme showed a reducing activity not only for aromatic alpha-keto amides but also for aliphatic and aromatic alpha-keto esters. The internal sequence of the enzyme was identical with that of a hypothetical protein (ORF YDL 124w) coded by yeast chromosome IV.  相似文献   

20.
Analogues of lysine containing a 4,5-acetylenic linkage (lysyne) or a cis- or trans-4,5-olefinic linkage (lysenes) function as substrates for a homogeneous L-lysine epsilon-transaminase from Achromobacter liquidum but partition between transamination and time-dependent inactivation. The partition ratio is lowest for lysyne (40 per inactivation event) and higher for trans-lysene (160 per inactivation event), and the cis-lysene transaminates 1600 times per inactivation event. cis-Lysene yields alpha-picolinate as a detectable accumulating product, presumably from cyclization of initial 6-aldehyde to dihydropicolinate and spontaneous autoxidation. The trans isomer also yields some picolinate as an identifiable product. The product from the few lysyne turnovers is as yet unknown but has strong absorbance at 318 nm. The inactive enzyme species from all three lysine analogues slowly (overnight) regain full activity after gel filtration chromatography and dialysis, suggesting reversal of the initial adduct-forming reaction. Initial studies with partially purified pseudomonad lysine alpha-racemase show alpha-3H incorporation from 3H2O but no inactivation consistent with the expectation that these lysine analogues could act readily as mechanism-based inactivators for pyridoxal P enzymes which act at the epsilon- but not the alpha-carbon of lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号