首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which DNA damage delays the anaphase onset is controversial. Some studies implicate a DNA damage checkpoint , whereas other studies invoke a spindle checkpoint . To resolve this issue, we compared the effects of random DNA breaks induced by X-irradiation to site-specific I-CreI endonuclease-induced chromosome breaks on cell-cycle progression in wild-type and checkpoint-defective Drosophila neuroblasts. We found that both the BubR1 spindle checkpoint pathway and the Grp/Chk1 DNA damage checkpoint pathway are involved in delaying the metaphase/anaphase transition after extensive X-irradiation-induced DNA damage, whereas Grp/Chk1, but not BubR1, is required to delay anaphase onset in the presence of I-CreI-induced double-strand breaks. On the basis of these results, we propose that DNA damage in nonkinetochore regions produces a Grp/Chk1 DNA-damage-checkpoint-mediated delay in the metaphase/anaphase transition.  相似文献   

2.
In vertebrate cells Chk1 is essential for multiple checkpoint responses to acute DNA damage or replication blocks, however potential functions for Chk1 during unperturbed cell cycles have remained less well characterised. In the past few years a role for Chk1 in timing the onset of mitosis in the absence of exogenous perturbations via regulation of Cdc25 family phosphatases has been documented. Furthermore, a recent report shows that Chk1 is also required for the spindle checkpoint which protects against spontaneous chromosome mis-segregation during mitotic cell division. Specifically, Chk1 is required for proper regulation of the mitotic Aurora-B kinase which ensures that anaphase proceeds only once all kinetochores have achieved bipolar attachment to microtubules and are under tension.  相似文献   

3.
The spindle checkpoint delays exit from mitosis in cells with spindle defects. In this paper, we show that Chk2 is required to delay anaphase onset when microtubules are completely depolymerized but not in the presence of relatively few unattached kinetochores. Mitotic exit in Chk2-deficient cells correlates with reduced levels of Mps1 protein and increased Cdk1–tyrosine 15 inhibitory phosphorylation. Chk2 localizes to kinetochores and is also required for Aurora B–serine 331 phosphorylation in nocodazole or unperturbed early prometaphase. Serine 331 phosphorylation contributed to prometaphase accumulation in nocodazole after partial Mps1 inhibition and was required for spindle checkpoint establishment at the beginning of mitosis. In addition, expression of a phosphomimetic S331E mutant Aurora B rescued chromosome alignment or segregation in Chk2-deficient cells. We propose that Chk2 stabilizes Mps1 and phosphorylates Aurora B–serine 331 to prevent mitotic exit when most kinetochores are unattached. These results highlight mechanisms of an essential function of Chk2 in mitosis.  相似文献   

4.
The mitotic checkpoint is the major cell cycle control mechanism for maintaining chromosome content in multicellular organisms. Prevention of premature onset of anaphase requires activation at unattached kinetochores of the BubR1 kinase, which acts with other components to generate a diffusible "stop anaphase" inhibitor. Not only does direct binding of BubR1 to the centromere-associated kinesin family member CENP-E activate its essential kinase, binding of a motorless fragment of CENP-E is shown here to constitutively activate BubR1 bound at kinetochores, producing checkpoint signaling that is not silenced either by spindle microtubule capture or the tension developed at those kinetochores by other components. Using purified BubR1, microtubules, and CENP-E, microtubule capture by the CENP-E motor domain is shown to silence BubR1 kinase activity in a ternary complex of BubR1-CENP-E-microtubule. Together, this reveals that CENP-E is the signal transducing linker responsible for silencing BubR1-dependent mitotic checkpoint signaling through its capture at kinetochores of spindle microtubules.  相似文献   

5.
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores.  相似文献   

6.
The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.  相似文献   

7.
The chromosomal passenger complex (CPC) plays a pivotal role in controlling accurate chromosome segregation and cytokinesis during cell division. Aurora-B, one of the chromosomal passenger proteins, is important for the mitotic spindle assembly checkpoint (SAC). Previous reports noted that Aurora-C is predominantly expressed in male germ cells and has the same subcellular localization as Aurora-B. Increasing evidence indicates that Aurora-C is overexpressed in many somatic cancers, although its function is uncertain. Our previous study showed that the aberrant expression of Aurora-C increases the tumorigenicity of cancer cells. Here, we demonstrate that overexpressed Aurora-C displaces the centromeric localization of CPCs, including INCENP, survivin, and Aurora-B. When cells were treated with nocodazole to turn on SAC, both the Aurora-B protein stability and kinase activity were affected by overexpressed Aurora-C. As a result, the activation of spindle checkpoint protein, BubR1, and phosphorylation of histone H3 and MCAK were also eliminated in Aurora-C-overexpressing cells. Thus, our results suggest that aberrantly expressed Aurora-C in somatic cancer cells may impair SAC by displacing the centromeric localization of CPCs.  相似文献   

8.
BubR1 is an important component of the spindle assembly checkpoint, and deregulated BubR1 functions frequently result in chromosomal instability and malignant transformation. We recently demonstrated that BubR1 was modified by sumoylation, and that lysine 250 (K250) functions as the crucial site for this modification. BubR1 sumoylation was neither required for its activation nor for binding to kinetochores. However, ectopically expressed sumoylation-deficient BubR1 mutants were retained on the kintochores even after apparent chromosome congression. The kinetochore retention of the sumoylation-deficient mutant of BubR1 caused an anaphase delay coupled with premature sister chromatid separation. Moreover, BubR1 interacted with unphosphorylated Sgo1, and its sumoylation facilitated the interaction. BubR1 sumoylation was inversely associated with its acetylation during mitotic progression. Trichostatin A, a protein deacetylase inhibitor, significantly compromised BubR1 sumoylation. Combined, these results reveal that BubR1 sumoylation plays an important role in its timely removal from the kinetochores and the checkpoint inactivation, thus allowing normal anaphase entry and chromosome segregation.Key words: BubR1, sumoylation, kinetochores, centromeric cohesion, spindle checkpoint, Sgo1  相似文献   

9.
The spindle assembly checkpoint monitors the attachment of kinetochores to the mitotic spindle and the tension exerted on kinetochores by microtubules and delays the onset of anaphase until all the chromosomes are aligned at the metaphase plate. The target of the checkpoint control is the anaphase-promoting complex (APC)/cyclosome, a ubiquitin ligase whose activation by Cdc20 is required for separation of sister chromatids. In response to activation of the checkpoint, Mad2 binds to and inhibits Cdc20-APC. I show herein that in checkpoint-arrested cells, human Cdc20 forms two separate, inactive complexes, a lower affinity complex with Mad2 and a higher affinity complex with BubR1. Purified BubR1 binds to recombinant Cdc20 and this interaction is direct. Binding of BubR1 to Cdc20 inhibits activation of APC and this inhibition is independent of its kinase activity. Quantitative analysis indicates that BubR1 is 12-fold more potent than Mad2 as an inhibitor of Cdc20. Although at high protein concentrations BubR1 and Mad2 each is sufficient to inhibit Cdc20, BubR1 and Mad2 mutually promote each other's binding to Cdc20 and function synergistically at physiological concentrations to quantitatively inhibit Cdc20-APC. Thus, BubR1 and Mad2 act cooperatively to prevent premature separation of sister chromatids by directly inhibiting APC.  相似文献   

10.
The mitotic spindle assembly checkpoint delays anaphase until all chromosomes achieve bipolar attachment to the spindle microtubules. The spindle assembly checkpoint protein BubR1 is thought to act by forming an inhibitory complex with Cdc20. We here identify two Cdc20 binding sites on BubR1. A strong Cdc20 binding site is located between residues 490 and 560, but mutations that disrupt Cdc20 binding to this region have no effect upon checkpoint function. A second Cdc20 binding site present between residues 1 and 477 is highly specific for Cdc20 already bound to Mad2. Mutation of a conserved lysine in this region weakened Cdc20 binding and correspondingly reduced checkpoint function. Our results indicate that there may be more than one checkpoint complex containing BubR1, Mad2, and Cdc20. They also lead us to propose that in vivo checkpoint inhibition of Cdc20 is a two-step process in which prior binding of Mad2 to Cdc20 is required to make Cdc20 sensitive to inhibition by BubR1. Thus, Mad2 and BubR1 must cooperate to inhibit Cdc20 activity.  相似文献   

11.
BubR1 is an important component of the spindle assembly checkpoint, and deregulated BubR1 functions frequently result in chromosomal instability and malignant transformation. We recently demonstrated that BubR1 was modified by sumoylation, and that lysine 250 (K250) functions as the crucial site for this modification. BubR1 sumoylation was neither required for its activation nor for binding to kinetochores. However, ectopically expressed sumoylation-deficient BubR1 mutants were retained on the kintochores even after apparent chromosome congression. The kinetochore retention of the sumoylation-deficient mutant of BubR1 caused an anaphase delay coupled with premature sister chromatid separation. Moreover, BubR1 interacted with unphosphorylated Sgo1, and its sumoylation facilitated the interaction. BubR1 sumoylation was inversely associated with its acetylation during mitotic progression. Trichostatin A, a protein deacetylase inhibitor, significantly compromised BubR1 sumoylation. Combined, these results reveal that BubR1 sumoylation plays an important role in its timely removal from the kinetochores and the checkpoint inactivation, thus allowing normal anaphase entry and chromosome segregation.  相似文献   

12.
The chromosomal passenger complex (CPC) is a critical regulator of chromosome segregation during mitosis by correcting nonbipolar microtubule-kinetochore interactions. By severing these interactions, the CPC is thought to create unattached kinetochores that are subsequently sensed by the spindle assembly checkpoint (SAC) to prevent premature mitotic exit. We now show that spindle checkpoint function of the CPC and its role in eliminating nonbipolar attachments can be uncoupled. Replacing the chromosomal passenger protein INCENP with a mutant allele that lacks its coiled-coil domain results in an overt defect in a SAC-mediated mitotic arrest in response to taxol treatment, indicating that this domain is critical for CPC function in spindle checkpoint control. Surprisingly, this mutant could restore alignment and cytokinesis during unperturbed cell divisions and was capable of resolving syntelic attachments. Also, Aurora-B kinase was localized and activated normally on centromeres in these cells, ruling out a role for the coiled-coil domain in general Aurora-B activation. Thus, mere microtubule destabilization of nonbipolar attachments by the CPC is insufficient to install a checkpoint-dependent mitotic arrest, and additional, microtubule destabilization-independent CPC signaling toward the spindle assembly checkpoint is required for this arrest, potentially through amplification of the unattached kinetochore-derived checkpoint signal.  相似文献   

13.
The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.  相似文献   

14.
Chk1 is a conserved protein kinase originally identified in fission yeast, required to delay entry of cells with damaged or unreplicated DNA into mitosis. The requirement of Chk1 for both S and G2/M checkpoints has been elucidated while only few studies have connected Chk1 to the mitotic spindle checkpoint. We used a small interference RNA strategy to investigate the role of Chk1 in unstressed conditions. Chk1 depletion in U2OS human osteosarcoma cells inhibited cell proliferation and raised the percentage of cells with a 4N DNA content, which correlated with accumulation of giant polynucleated cells morphologically distinct from apoptotic cells, while no increased number of cells in G2 or mitosis could be detected. Down-regulation of Chk1 also caused accumulation of cells in the last step of cytokinesis, and of tetraploid cells in G1 phase, which coincided with activation of p53 and increased levels of p21. In addition, Chk1-depleted U2OS cells failed to arrest in mitosis after spindle disruption by nocodazole and showed decreased protein levels of Mad2 and BubR1. These studies show that U2OS cells lacking Chk1 undergo abnormal mitosis and fail to activate the spindle checkpoint, suggesting a role of Chk1 in this checkpoint.  相似文献   

15.
During mitosis the spindle assembly checkpoint (SAC) delays the onset of anaphase and mitotic exit until all chromosomes are bipolarly attached to spindle fibers. Both lack of attachment due to spindle/kinetochore defects and lack of tension across kinetochores generate the “wait anaphase” signal transmitted by the SAC, which involves the evolutionarily conserved Mad1, Mad2, Mad3/BubR1, Bub1, Bub3 and Mps1 proteins, and inhibits the activity of the ubiquitin ligase Cdc20/APC, that promotes both sister chromatid dissociation in anaphase and mitotic exit. In particular, Mad3/BubR1 is directly implicated, together with Mad2, in Cdc20 inactivation in both human and yeast cells, suggesting that its activity is likely finely regulated. We show that budding yeast Mad3, like its human orthologue BubR1, is a phosphoprotein that is hyperphosphorylated during mitosis and when SAC activation is triggered by microtubule depolymerizing agents, kinetochore defects or lack of kinetochore tension. In vivo Mad3 phosphorylation depends on the Polo kinase Cdc5 and, to a minor extent, the Aurora B kinase Ipl1. Accordingly, replacing with alanines five serine residues belonging to Polo kinase-dependent putative phosphorylation sites dramatically reduces Mad3 phosphorylation, suggesting that Mad3 is likely an in vivo target of Cdc5.  相似文献   

16.
The partially conserved Mad3/BubR1 protein is required during mitosis for the spindle assembly checkpoint (SAC). In meiosis, depletion causes an accelerated transit through prophase I and missegregation of achiasmate chromosomes in yeast [1], whereas in mice, reduced dosage leads to severe chromosome missegregation [2]. These observations indicate a meiotic requirement for BubR1, but its mechanism of action remains unknown. We identified a viable bubR1 allele in Drosophila resulting from a point mutation in the kinase domain that retains mitotic SAC activity. In males, we demonstrate a dose-sensitive requirement for BubR1 in maintaining sister-chromatid cohesion at anaphase I, whereas the mutant BubR1 protein localizes correctly. In bubR1 mutant females, we find that both achiasmate and chiasmate chromosomes nondisjoin mostly equationally consistent with a defect in sister-chromatid cohesion at late anaphase I or meiosis II. Moreover, mutations in bubR1 cause a consistent increase in pericentric heterochromatin exchange frequency, and although the synaptonemal complex is set up properly during transit through the germarium, it is disassembled prematurely in prophase by stage 1. Our results demonstrate that BubR1 is essential to maintain sister-chromatid cohesion during meiotic progression in both sexes and for normal maintenance of SC in females.  相似文献   

17.
18.
Loss or gain of whole chromosomes, the form of chromosomal instability (CIN) most commonly associated with human cancers, is expected to arise from the failure to accurately segregate chromosomes in mitosis. The mitotic checkpoint is one pathway that prevents segregation errors by blocking the onset of anaphase until all chromosomes make proper attachments to the spindle. Another process that prevents errors is stabilization and destabilization of connections between chromosomes and spindle microtubules. An outstanding question is how these two pathways are coordinated to ensure accurate chromosome segregation. Here we show that in human cells depleted of BubR1 - a critical component of the mitotic checkpoint that can directly regulate the onset of anaphase - chromosomes do not form stable attachments to spindle microtubules. Attachments in these cells are restored by inhibition of Aurora kinase, which is known to stabilize kinetochore-microtubule attachments. Loss of BubR1 function thus perturbs regulation of attachments rather than the ability of kinetochores to bind to microtubules. Consistent with this finding, depletion of BubR1 increases phosphorylation of CENP-A, a kinetochore-specific Aurora kinase substrate. We propose that BubR1 links regulation of chromosome-spindle attachment to mitotic checkpoint signalling.  相似文献   

19.
Mao Y  Abrieu A  Cleveland DW 《Cell》2003,114(1):87-98
The mitotic checkpoint prevents advance to anaphase prior to successful attachment of every centromere/kinetochore to mitotic spindle microtubules. Using purified components and Xenopus egg extracts, the kinetochore-associated microtubule motor CENP-E is now shown to be the activator of the essential checkpoint kinase BubR1. Since kinase activity and the checkpoint are silenced following CENP-E-dependent microtubule attachment in extracts or binding of CENP-E antibodies that do not disrupt CENP-E association with BubR1, CENP-E mediates silencing of BubR1 signaling. Checkpoint signaling requires the normal level of BubR1 containing a functional Mad3 domain implicated in Cdc20 binding, but only a small fraction need be kinase competent. This supports bifunctional roles for BubR1 in the checkpoint: an enzymatic one requiring CENP-E-dependent activation of its kinase activity at kinetochores and a stoichiometric one as a direct inhibitor of Cdc20.  相似文献   

20.
Zhao Y  Chen RH 《Current biology : CB》2006,16(17):1764-1769
The spindle checkpoint delays anaphase onset until all chromosomes have achieved bipolar attachment to the spindle microtubules. Unattached kinetochores activate the spindle checkpoint by recruiting several spindle-checkpoint proteins, including Mps1, Mad1, Mad2, Bub1, Bub3, and BubR1 (Mad3 in yeast). In vertebrate cells, active MAP kinase (MAPK) is also enriched at unattached kinetochores and is required for the spindle checkpoint. It has been shown that the kinase activity of Mps1 is required for the spindle checkpoint and for kinetochore localization of Bub1, Bub3, Mad1, and Mad2 . We herein demonstrate that MAPK phosphorylates Mps1 at S844 in Xenopus egg extracts. Interestingly, changing S844 to unphosphorylatable alanine (S844A) has no effect on the kinase activity of Mps1, although it abolishes the checkpoint function of Mps1. Biochemical and immunofluorescence studies show that S844A mutation perturbs kinetochore localization of Mps1 and other spindle-checkpoint proteins, whereas the phosphorylation-mimicking S844D mutant restores their functions. Our studies suggest that Mps1 phosphorylation by MAPK at S844 might create a phosphoepitope that allows Mps1 to interact with kinetochores. In addition, our results indicate that active Mps1 must localize to kinetochores in order to execute its checkpoint function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号