首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation method, flow field-flow fractionation (flow FFF), is coupled on-line with multiangle laser light scattering (MALLS) for simultaneous measurement of the size and concentration of vesicles eluting continuously from the fractionator. These size and concentration data, gathered as a function of elution time, may be used to construct both number- and mass-weighted vesicle size distributions. Unlike most competing, noninvasive methods, this flow FFF/MALLS technique enables measurement of vesicle size distributions without a separate refractive index detector, calibration using particle size standards, or prior assumptions about the shape of the size distribution. Experimentally measured size distributions of vesicles formed by extrusion and detergent removal are non-Gaussian and are fit well by the Weibull distribution. Flow FFF/MALLS reveals that both the extrusion and detergent dialysis vesicle formation methods can yield nearly size monodisperse populations with standard deviations of approximately 8% about the mean diameter. In contrast to the rather low resolution of dynamic light scattering in analyzing bimodal systems, flow FFF/MALLS is shown to resolve vesicle subpopulations that differ by much less than a factor of two in mean size.  相似文献   

2.
B Prüger  P Eppmann  E Donath    J Gimsa 《Biophysical journal》1997,72(3):1414-1424
Common dynamic light scattering (DLS) methods determine the size and zeta-potential of particles by analyzing the motion resulting from thermal noise or electrophoretic force. Dielectric particle spectroscopy by common microscopic electrorotation (ER) measures the frequency dependence of field-induced rotation of single particles to analyze their inherent dielectric structure. We propose a new technique, electrorotational light scattering (ERLS). It measures ER in a particle ensemble by a homodyne DLS setup. ER-induced particle rotation is extracted from the initial decorrelation of the intensity autocorrelation function (ACF) by a simple optical particle model. Human red blood cells were used as test particles, and changes of the characteristic frequency of membrane dispersion induced by the ionophore nystatin were monitored by ERLS. For untreated control cells, a rotation frequency of 2 s-1 was induced at the membrane peak frequency of 150 kHz and a field strength of 12 kV/m. This rotation led to a decorrelation of the ACF about 10 times steeper than that of the field free control. For deduction of ERLS frequency spectra, different criteria are discussed. Particle shape and additional field-induced motions like dielectrophoresis and particle-particle attraction do not significantly influence the criteria. For nystatin-treated cells, recalculation of dielectric cell properties revealed an ionophore-induced decrease in the internal conductivity. Although the absolute rotation speed and the rotation sense are not yet directly accessible, ERLS eliminates the tedious microscopic measurements. It offers computerized, statistically significant measurements of dielectric particle properties that are especially suitable for nonbiological applications, e.g., the study of colloidal particles.  相似文献   

3.
Chylomicrons, the vehicles for the transport of exogeneous triglycerides and cholesterol in the lymph and the blood, were characterized by their size from dynamic light scattering measurements. To achieve an appropriate resolution, correlation data were collected over several hours. Analysis was performed with an extended version of the regularization method CONTIN, and special attention was given to errors in the experimental baseline and to randomness of the residuals. The solutions selected by means of Fisher's F-test by CONTIN agreed with those obtained with the stability plot of Schnablegger and Glatter, when in the case of data of lower statistical accuracy the solution was taken from the lower part of the confidence interval of the F-test. The intensity-weighted size distributions indicated two classes of particle, their mean diameters being 100–140 nm and 330–350 nm. The ability to resolve two peaks of such a size ratio is demonstrated. The numbers of particles associated with the two peaks were estimated by means of the scattering properties of the particles, which showed that the overwhelming majority were small ones. This estimation also suggested that the mean size of the first peak of the number distribution is significantly smaller than the typical size of chylomicrons. This was consistent with the finding that the sample contained not only apolipoprotein B-48 but also a similar amount of apolipoprotein B-100, which is associated with lipoproteins of smaller size. The larger particles of the second peak are probably dietary triglyceride-rich chylomicrons. Received: 12 October 1997 / Revised version: 26 June 1998 / Accepted: 7 August 1998  相似文献   

4.
This paper presents a study of the influence of normalization errors on size distributions obtained from the analysis of intensity fluctuations by photon correlation spectroscopy. The effects of these errors are demonstrated by means of computer-generated autocorrelation functions simulating light scattered from a monomodal Schulz distribution of small, spherical, unilamellar lipid vesicles. The calculations show that even small errors in the baseline, modifying the data upon normalization systematically, will cause serious errors in the estimated size distribution. As it turns out this is due to the peculiar characteristics of normalization errors in data of the first order autocorrelation function. The errors introduced there are described in parts by functions of the delay time having positive exponents. Such components are not considered in the integral equations commonly used to analyze the measured data. The error's property to be a function of delay time in turn enables us to obtain the relative baseline error from the inversion of the data. The new method for its determination is described in some detail. Here, it has been realized with a modified version of the size distribution algorithm CONTIN.  相似文献   

5.
6.
Dynamic light scattering (DLS) measurements were performed to study the binding of anionic surfactant alpha olefin sulfonate (AOS) to gelatin chains at various NaCl concentrations at 30 degrees C in aqueous sodium phosphate buffer (pH = 6.8) solutions. The surfactant concentration was varied from 0 to 80 mM and the NaCl concentrations chosen were 0.025, 0.05, and 0.1 M. AOS exhibited electrostatic binding to the positively charged sites of the polypeptide chain resulting in considerable reduction in its hydrodynamic radius up to critical micellar concentration (cmc = 8 mM for no salt, 0.01 and 0.025 M, and 5 mM for 0.05 M and 2 mM for 0.1 M solutions). The correlation function revealed the presence of two types of structures above cmc; namely the micelles of AOS and gelatin-AOS micelle complexes. The micellar radii (Rm), the effective gelatin-surfactant complex radii (Rc), have been determined as a function of salt concentration. No critical aggregation concentration (cac) was observed. The inter-gelatin-surfactant complex (kD1) and inter-micellar interactions (kD2), were determined by fitting the concentration dependence of Rm and Rc to a virial expansion in reduced concentration (c - cmc), which are compared. While kD1 showed strong ionic strength dependence, kD2 remained invariant of the same. The protein to surfactant binding ratio was found to be smaller than normal. Results have been discussed within the framework of the necklace-bead model of polymer-surfactant interactions.  相似文献   

7.
S Michielsen  R Pecora 《Biochemistry》1981,20(24):6994-6997
Gramicidin is thought to form dimeric helical rods in alcohol solutions. In addition, there is evidence that the rod dimensions change upon addition of potassium ions. The present work reports values for the translational and rotational diffusion coefficients of gramicidin in methanol and 95% ethanol and in these same solvents with added KSCN. Solution dimensions are calculated from the diffusion coefficients. The results suggest that gramicidin exists primarily as dimers in these solutions and that the gramicidin rod does indeed become shorter upon addition of potassium ion. These results are consistent with those obtained from X-ray studies on single crystals grown from alcohol solutions.  相似文献   

8.
9.
F R Hallett  R Keates 《Biopolymers》1985,24(12):2403-2415
A new method for determining the length distribution of microtubule preparations, using quasi-elastic light scattering (QELS) is described. The experimental electric field autocorrelation functions are analyzed using a closed-form expression recently described by Hallett, Craig, and Nickel [(1985) Biopolymers 24 , 947–960], which is incorporated into an exponential sampling procedure. The resulting length distributions are compared with those obtained for the same samples with electron microscopy (EM). If standard grid-preparation procedures were used, the EM results yielded shorter length distributions than QELS. When grids were prepared at lower microtubule number densities, less grid washing was required. In these cases, excellent agreement between the EM and QELS techniques were achieved.  相似文献   

10.
11.
R M Murphy  M L Yarmush  C K Colton 《Biopolymers》1991,31(11):1289-1295
Physiological properties of soluble antigen-antibody (Ag-Ab) complexes depend in part on the size of the complexes. In previous work, the size distribution and structure of model Ag-Ab complexes were determined by electron microscopy. In this study, we used constrained regularization analysis of quasi-elastic light scattering data to estimate molecular weight distributions of model Ag-Ab complexes. A conformational model was necessary to determine appropriate correlations between molecular weight and diffusion coefficient, and to estimate particle structure factors. Porod-Kratky theory proved to be an adequate conformational model for these purposes. The molecular weight distributions determined by constrained regularization compared favorably with distributions obtained either by electron microscopy or by thermodynamic modeling.  相似文献   

12.
The solution conformation and internal motions of five superhelical DNAs between 2100 and 10200 base-pairs in length have been characterized by dynamic light scattering (DLS). Variations in the diffusion coefficients and rotational relaxation times with molecular weight are both indicative of an anisotropic extended structure of these DNAs; we therefore conclude that under our conditions the interwound superhelical structure prevails. The internal dynamics can be described by a superposition of rotational diffusion and internal relaxation. The latter process is characterized by the internal diffusion of persistence length size segments within the DNA chain and faster bending motions within these segments.  相似文献   

13.
The aggregation processes leading to crystallization and precipitation of canavalin have been investigated by dynamic light scattering (DLS) in photon correlation spectroscopy (PCS) mode. The sizes of aggregates formed under various conditions of pH, salt concentration, and protein concentrations were deduced from the correlation functions generated by the fluctuating intensity of light scattered by the solutions of the protein. Results obtained indicate that the barrier to crystallization of canavalin is the formation of the trimer, a species that has been characterized by x-ray crystallographic studies (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). The dimensions of the trimer in solution are in good agreement with those obtained both from the crystal (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480) and from a low angle x-ray scattering study in solution (Plietz, P., P. Damaschun, J. J. Müller, and B. Schlener. 1983. FEBS [Fed. Eur. Biochem. Soc.] Lett. 162:43-46). Furthermore, under conditions known to lead to the formation of rhombohedral crystals of canavalin, a limiting size is reached at high concentrations of canavalin. The size measured corresponds to an aggregate of trimers making a unit rhombohedral cell consistent with x-ray crystallographic data (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). Presumably, such aggregates are the nuclei from which crystal growth proceeds. The present study was undertaken primarily to test the potential of DLS (PCS) as a tool for rapid, routine screening to determine the ultimate fate of protein solutions (i.e., crystallization or amorphous precipitation) at an early stage, therefore eliminating the need for long-term visual observation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
88 semen samples from 39 bulls have been investigated by the quasi-elastic light scattering technique. Normal, defective, and dead cells each yielded characteristic autocorrelation functions. The form of these functions indicates that the swimming speed distribution of normal cells is a gamma distribution with two degrees of freedom while that for defective or circular swimmers is a gamma distribution with one degree of freedom. The resulting analysis of the experimental autocorrelation functions yields the fraction of the sample that is normal, the fraction that is defective, and the average speed of each group. The average helical swimming speed of normal cells was found to be 384 micron/s, while the average trajectory speed of the circular swimmers was found to be 103 micron/s. The overall quality of the semen samples as determined by light scattering is compared to quality determination on the same samples by technicians from the artificial insemination industry.  相似文献   

15.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   

16.
The effect of pressure, at elevated temperatures, is reported on the activity and stability of a thermophilic endo‐β‐glucanase from the filamentous fungus Talaromyces emersonii. The production of reduced sugars after treatment at different temperatures and pressures is used as a measure of the activity and stability of the enzyme. The activity of the enzyme is maintained to higher temperatures with increasing pressure. For example, the relative activity of endo‐β‐glucanase decreases to 30% after 4 h at 75°C and 1 bar, whereas it is preserved at 100% after 6 h at 75°C and 230 bar. High‐pressure dynamic light scattering is used to characterize the hydrodynamic radius of the enzyme as a function of pressure, temperature, and time. At higher temperature the hydrodynamic radius increases with time, whereas increasing pressure suppresses this effect. Changes in the hydrodynamic radius are correlated with the activity measurements obtained at elevated pressures, since the changes in the hydrodynamic radius indicate structural changes of the enzyme, which cause the deactivation. Biotechnol. Bioeng. 2013; 110: 1674–1680. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Bloomfield VA 《Biopolymers》2000,54(3):168-172
We use standard hydrodynamic and light scattering theories to calculate the total intensity and dynamic light scattering properties of random aggregates of spherical particles containing up to ten spheres. When the aggregates have dimensions comparable to the wavelength of light, intraaggregate interference effects can dramatically reduce the apparent size of the aggregates. These results could be significant in interpreting DNA condensation, protein polymerization, and other biomolecular aggregation reactions.  相似文献   

18.
The formation of non-soluble complexes between a positively charged protein and a strong anionic polyelectrolyte, chymotrypsin, and poly vinyl sulfonate, respectively, was studied under different experimental conditions such as pH (1-3.5), protein concentration, temperature, ionic strength, and the presence of anions that modifies the water structure. Turbidimetric titration and dynamic light scattering approaches were used as study methods. When low protein-polyelectrolyte ratio was used, the formation of a soluble complex was observed. The increase in poly vinyl sulfonate concentration produced the interaction between the soluble complex particules, thus inducing macro-aggregate formation and precipitation. Stoichiometry ratios of 500 to 780 protein molecules were found in the precipitate per polyelectrolyte molecule when the medium pH varied from 1.0 to 3.5. The kinetic of the aggregation process showed to be of first order with a low activation energy value of 4.2+/-0.2 kcal/mol. Electrostatic forces were found in the primary formation of the soluble complex, while the formation of the insoluble macro aggregate was a process driven by the disorder of the ordered water around the hydrophobic chain of the polymer.  相似文献   

19.
Cell aggregation was studied using the method of dynamic light scattering in the course of growth of Micrococcus luteus cultures in a liquid medium. The method detects particles ranging in size from 0.5 to 1000 microm in samples containing no more than 10(5) cells/ml. When grown in liquid media, M. luteus forms aggregates; during the lag phase, 80% of the cells are found in aggregates of 10 to 1000 microm, only minor amounts being represented by single cells. With the onset of exponential growth, the aggregates were decomposed, and single cells became prevalent in the culture liquid. This observation confirms that the aggregation of the cells during the lag phase is prerequisite to the initiation of bacterial growth. The method may be used in biotechnology for monitoring the state of bacterial cultures.  相似文献   

20.
The appearance of the slow mode, revealed by dynamic light scattering (DLS) measurements in Micrococcus luteus DNA with high GC content, and the effect of guanine sequences on changes of DNA physical state and conformational transitions were investigated. We used two different spectroscopic approaches: DLS, to evidence the relatively slowly diffusing particles arising at high salt concentration, ascribable to the formation of large unspecific molecular aggregates, and circular dichroism spectroscopy, to identify these entities. Our results bring us to conclude that a peculiar, unconventional, structural transition, due to the presence of long guanine stretches, in a well-defined experimental condition, can occur. We comment on the biological implications to detect, by spectroscopic measurements, such an unusual structure involved in the stability, protection and replication maintenance along the human telomeric G-rich strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号