首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Basic fibroblast growth factor in rat salivary glands   总被引:5,自引:0,他引:5  
We studied the occurrence and localization of basic fibroblast growth factor (bFGF) in rat salivary glands using a specific monoclonal antibody. It was shown that the extract of rat salivary glands has a pronounced stimulatory activity on the growth of bovine capillary endothelial cells, which is blocked by the addition of an antibody against bFGF. The concentration of bFGF in the submandibular/sublingual gland, as determined by radioimmunoassay, was 80% that in the brain. Immunocytochemistry revealed bFGF-immunoreactivity localized primarily in the epithelial cells lining the striated ducts and excretory ducts of the parotid, sublingual and submandibular glands. In addition, intense bFGF-immunoreactivity was observed in the granular convoluted tubule of the submandibular gland, localized predominantly in the agranular pillar cells, which lay in small numbers among the majority of weakly immunostained cells containing many apical secretory granules. At the electron-microscopic level, the immunoreactive material was distributed diffusely in the cytoplasmic matrix and nuclei of all immunoreactive cells, whereas it was absent from all cytoplasmic organelles including the secretory granules. These results indicate that bFGF is localized in different cellular and subcellular compartments from those of other growth factors in the duct system of rat salivary glands.  相似文献   

4.
The guanylin family of bioactive peptides consists of three endogenous peptides, including guanylin, uroguanylin and lymphoguanylin, and one exogenous peptide toxin produced by enteric bacteria. These small cysteine-rich peptides activate cell-surface receptors, which have intrinsic guanylate cyclase activity, thus modulating cellular function via the intracellular second messenger, cyclic GMP. Membrane guanylate cyclase-C is an intestinal receptor for guanylin and uroguanylin that is responsible for stimulation of Cl- and HCO3- secretion into the intestinal lumen. Guanylin and uroguanylin are produced within the intestinal mucosa to serve in a paracrine mechanism for regulation of intestinal fluid and electrolyte secretion. Enteric bacteria secrete peptide toxin mimics of uroguanylin and guanylin that activate the intestinal receptors in an uncontrolled fashion to produce secretory diarrhea. Opossum kidney guanylate cyclase is a key receptor in the kidney that may be responsible for the diuretic and natriuretic actions of uroguanylin in vivo. Uroguanylin serves in an endocrine axis linking the intestine and kidney where its natriuretic and diuretic actions contribute to the maintenance of Na+ balance following oral ingestion of NaCl. Lymphoguanylin is highly expressed in the kidney and myocardium where this unique peptide may act locally to regulate cyclic GMP levels in target cells. Lymphoguanylin is also produced in cells of the lymphoid-immune system where other physiological functions may be influenced by intracellular cyclic GMP. Observations of nature are providing insights into cellular mechanisms involving guanylin peptides in intestinal diseases such as colon cancer and diarrhea and in chronic renal diseases or cardiac disorders such as congestive heart failure where guanylin and/or uroguanylin levels in the circulation and/or urine are pathologically elevated. Guanylin peptides are clearly involved in the regulation of salt and water homeostasis, but new findings indicate that these novel peptides have diverse physiological roles in addition to those previously documented for control of intestinal and renal function.  相似文献   

5.
6.
7.
Guanylin, a bioactive intestinal peptide, is involved in the cystic fibrosis transmembrane conductance (CFTR)-regulated electrolyte/water secretion in various epithelia. In the present work we report on the expression and cellular localization of guanylin and its affiliated signaling and effector proteins, including guanylate cyclase C (Gucy2c), Proteinkinase GII (Pkrg2), CFTR and the solute carrier family 4, anion exchanger, member 2 (Slc4a2) in the hepatobiliary system of rat and guinea pig. Localization studies in the liver and the gallbladder revealed that guanylin is located in the secretory epithelial cells of bile ducts of the liver and of the gallbladder, while Gucy2c, Pkrg2, CFTR, and Slc4a2 are confined exclusively to the apical membrane of the same epithelial cells. Based on these findings, we assume that guanylin is synthesized as an intrinsic peptide in epithelial cells of the hepatobiliary system and released luminally into the hepatic and cystic bile to regulate electrolyte secretion by a paracrine/luminocrine signaling pathway.  相似文献   

8.
Parathyroid hormone-related protein (PTHrP) was isolated from tumours and is thought to represent the main factor responsible for humoral hypercalcaemia, which accompanies neoplastic diseases. At present, the protein is known to reside in multiple tissues and organs of both humans and animals. Our study was aimed at demonstrating the presence of PTHrP in normal salivary glands (parotid and submandibular) of rats and humans. Application of immunocytochemical techniques permitted to document the presence of PTHrP in the human and in the rat salivary glands. In all cases, an intense reaction was observed in intra- and interlobular ducts. In rat salivary glands, PTHrP was also present in cells of mucous acini. In our opinion, the presence of PTHrP in the ducts indicates participation of the protein in electrolyte transport across the epithelial cells. The positive reaction noted in mucous acini of rat salivary glands may indicate accessory role of PTHrP in the secretory processes in the glands.  相似文献   

9.
Guanylin and related peptides.   总被引:4,自引:0,他引:4  
Guanylin and uroguanylin are short peptides homologous to heat-stable enterotoxins of Escherichia coli and other enteric bacteria. Guanylin and uroguanylin are synthetized from the respective prepropeptides mainly in gastrointestinal mucosa and are secreted both into intestinal lumen and into the blood. Luminally secreted peptides stimulate chloride and bicarbonate secretion in the intestine through the mechanism involving guanylate cyclase C receptor, cyclic GMP, protein kinase G and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Bacterial enterotoxins, which have greater potency than endogenous peptides, induce excessive fluid secretion into intestinal lumen leading to secretory diarhea. Uroguanylin is expressed mainly in enterochromaffin cells of duodenum and proximal small intestine whereas guanylin is abundant in goblet cells of colonic epithelium. Uroguanylin and guanylin increase urinary sodium and potassium excretion both as circulating hormones and as paracrine mediators produced within the kidney. Uroguanylin functions as "intestinal natriuretic hormone" which is secreted in response to oral sodium loading and maintains sodium balance during postprandial period. Plasma and urinary concentrations of guanylin and uroguanylin increase in renal failure and heart failure. Guanylin peptides possess antiproliferative activity in intestinal cells culture and their expression decreases in colonic carcinoma indicating that their deficiency may contribute to the pathogenesis of this disease.  相似文献   

10.
Patterns of salivary HCO secretion vary widely among species and among individual glands. In particular, virtually nothing is known about the molecular identity of the HCO transporters involved in human salivary secretion. We have therefore examined the distribution of several known members of the Na(+)-HCO cotransporter (NBC) family in the parotid and submandibular glands. By use of a combination of RT-PCR and immunoblotting analyses, the electroneutral cotransporters NBC3 and NBCn1 mRNA and protein expression were detected in both human and rat tissues. Immunohistochemistry demonstrated that NBC3 was present at the apical membranes of acinar and duct cells in both human and rat parotid and submandibular glands. NBCn1 was strongly expressed at the basolateral membrane of striated duct cells but not in the acinar cells in the human salivary glands, whereas little or no NBCn1 labeling was observed in the rat salivary glands. The presence of NBCn1 at the basolateral membrane of human striated duct cells suggests that it may contribute to ductal HCO secretion. In contrast, the expression of NBC3 at the apical membranes of acinar and duct cells in both human and rat salivary glands indicates a possible role of this isoform in HCO salvage under resting conditions.  相似文献   

11.
Using 4-methylumbelliferyl-N-acetylneuraminic acid (4MU-NeuAc) as substrate, we measured sialidase activity in the salivary glands and other organs of the rat. The pH optima of salivary gland sialidase were between 4.0 and 4.5, which were similar to those of the enzyme in the brain, liver and kidney. Among the salivary glands, the submandibular one showed the highest sialidase activity followed by the parotid and the sublingual glands. However, sialidase activity in these glands was lower when compared with the activity in the brain, liver and kidney. From the subcellular distribution study, salivary gland sialidase was found to be mainly localized in the lysosomes. The pH optima of the lysosomal sialidase of the salivary glands were between 4.0 and 4.5; and Km values for 4MU-NeuAc approximately 0.09 mmol/l. In the submandibular and parotid glands, a soluble sialidase with a different pH optimum (5.5) and Km value (0.25 mmol/l) was also detected.  相似文献   

12.
Summary Lumina and adluminal cells in human salivary gland pleomorphic adenomas were found to contain neutral, carboxylated, and occasionally sulphated glycoproteins. A variable component of luminal contents and secretory granules did not appear to contain glycoprotein and possibly consisted of protein. Glycosaminoglycans, which appeared to be hyaluronic acid and chondroitin sulphate, were demonstrated rarely in lumina, often between epithelial cells, and forming the matrix of myxoid tissue and, together with collagen, chondroid tissue. No differences were seen between tumours from parotid glands and those from submandibular glands. Glycoproteins demonstrated in the epithelium are similar to those of intercalary ducts of parotid and submandibular glands, and may represent a primitive form of salivary secretion. Glycosaminoglycans secreted intercellularly by epithelial cells cause their increasing separation to form myxoid or chondroid tissue. This stromalization extends to lumina to produce a loss of epithelium. Pleomorphic adenoma appears to be a manifest example of variable derepression of the genotype.  相似文献   

13.
14.
The research was planned to study the subcellular distribution of enzymatic secretory products within the secretory structures of the mouse major salivary glands at light and electron microscopy level by immunogold silver stain (IGSS) technique and double-sided post-embedding immunogold binding and silver amplification in order to speculate about their compartmentation. In particular, we experimented the above immunogold labeling approaches to localize the lysozyme and to verify its distribution patterns in relation to another secretion enzyme, alpha-amylase. Co-presence of lysozyme and alpha-amylase was observed in the convoluted granular tubule cells of the submandibular gland and in the demilunar cells of the sublingual gland as well as in the electron-dense regions of the mottled secretory granules in the parotid gland. Exclusive binding patterns of lysozyme were observed in the acinar cells of the submandibular and sublingual glands where alpha-amylase did not occur.  相似文献   

15.
The distribution of the three nitric oxide synthase (NOS) isoforms was determined immunohistochemically in the human minor and major salivary glands with comparison to that of rat salivary glands. In contrast to rat glands, which contained a dense plexus of neuronal NOS-immunoreactive nerve fibers, only a minority of the nerve fibers in human glands showed neuronal NOS immunoreactivity. Human labial and submandibular glands contained sparse NOS-immunoreactive fibers, while only occasional nerve fibers in the parotid or sublingual glands were stained. Furthermore, in contrast to the animal glands, most duct epithelial cells in all human salivary glands were immunoreactive for neuronal NOS. No specific immunoreactivity for inducible or endothelial NOS were observed in the nerve fibers or duct epithelium. We provide evidence to suggest that the role of nitric oxide in the regulation of salivary gland function is different in human as compared to experimental animals. Nitricergic innervation in human tissue is very sparse and thus nitric oxide is probably of minor importance as a neural regulator of salivary glands. Instead, NOS localized in duct epithelial cells suggests that nitric oxide might directly regulate saliva secretion and it is a putative source of nitrates previously reportedly secreted into the saliva.  相似文献   

16.
The thermoanalytical analysis was applied to samples of sublingual, submandibular and parotid glands from sexually mature mice of both sexes. Findings indicated that the three salivary glands show a behaviour of water release characteristic for each type of gland. Derivative thermogravimetry curves concerned with the sublingual and parotid glands belonging to male and female subjects exhibited overlapped results. As regards submandibular gland, instead, some differences emerged between subjects of different sex. Water content and types in sublingual, submandibular and parotid glands were discussed and related to the different morphological expression, histochemical reactivity and chemical composition of these organ tissues.  相似文献   

17.
18.
IntroductionImmunoglobulin G4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition. Forty-two cases with immunoglobulin G4-related sialadenitis (IgG4-RS) confirmed by histopathological and immunohistochemical assessment were studied to clarify the clinicopathologic characteristics of the salivary glands involved in IgG4-RS, especially the relationship between the histopathologic features and function of salivary glands or serum levels of IgG4.MethodsClinical, serologic, imaging and histopathological data of these cases were analyzed. CT volumes of submandibular, parotid, and lacrimal glands were calculated. The saliva flow rate was measured. Scintigraphy with 99mTc-pertechnetate was undertaken in 31 cases, and the concentration index (CI) and secretion index (SI) was calculated. Relationships between fibrosis severity and salivary gland function or serum IgG4 levels were analyzed.ResultsThe first symptom was swelling of bilateral submandibular or lacrimal glands. Physical examination showed multiple bilateral major salivary glands (including sublingual and accessory parotid glands) and lacrimal glands were enlarged in IgG4 RS. Multiple enlarged cervical lymph nodes were noted in 30 patients. Saliva flow at rest was lower than normal in 34 cases; stimulated saliva flow was lower than normal in 15 cases. Secretory function was reduced more severely in the submandibular glands than in the parotid glands. Serum levels of IgG4 were elevated in 95.2% of cases and 78.6% patients had increased IgE levels. Serum IgG4 level was higher and saliva secretion lower as glandular fibrosis increased.ConclusionsProminent changes in the morphology, histology, immunohistochemistry and secretion of the major salivary glands of IgG4-RS patients were accompanied by involvement of the lacrimal glands and cervical lymph nodes. Elevated IgE, allergic history, eosinophil infiltration suggest allergic reactions as a potential pathogenesis of IgG4-RS. Severity of glandular fibrosis correlated with salivary function and serum levels of IgG4.  相似文献   

19.
We investigated the expression and distribution of osteopontin in mouse salivary glands. Western blot analysis showed intense positive bands at the predicted molecular mass (about 60 kDa) in mouse parotid and sublingual glands. However, a cross-reacted band around 30 kDa was strongly detected in submandibular glands. Indirect immunofluorescent analysis showed that osteopontin was localized at the luminal (apical) membranes of the acinar cells in parotid and sublingual glands. However, it was not detected in acinar cells of submandibular glands. No expression was found in ductal cells of any glands. We also examined the expression of matrix metalloproteinase (MMP)-3 and -7. In parotid gland, MMP-3 was observed at 57 kDa, indicating a latent form, but MMP-7 was not detected. In contrast, MMP-7 definitely was observed at 28 kDa area in submandibular gland, whereas MMP-3 was not detected. These results suggest that osteopontin localizes at luminal sites of acinar cells and may be associated with saliva secretion in mouse salivary gland. It is also suggested that osteopontin may be cleaved by MMP-7 in mouse submandibular gland.  相似文献   

20.
Summary The ultrastructural localization of dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5) in rat submandibular and parotid glands was studied immunocytochemically by the peroxidase-antiperoxidase (PAP) method, using a monospecific antiserum against rat kidney DPP IV. There were no differences in the immunocytochemical localization of DPP IV between submandibular and parotid glands. In these glands, DPP IV was primarily found to be associated with the luminal and intercellular canalicular plasma membranes of acinar cells and with the luminal plasma membranes of intercalated and striated duct cells. Occasionally, immunoreaction of DPP IV was detected in cytoplasmic vesicles (vacuoles), lysosomes, and multivesicular bodies in some acinar cells as well as in ductal epithelial cells. Furthermore, the reaction product was also found within the lumina of peri-acinar and peri-ductal capillaries and in the cytoplasm of some fibroblasts in the interstitial connective tissue. These data suggest that DPP IV in the submandibular and parotid glands may play some role in the secretion or reabsorption processes of secretory proteins and peptides in these glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号